SLUSDE1E September   2018  – November 2024 UCC21540 , UCC21540A , UCC21541 , UCC21542

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1. 5.1 Pin Configuration and Functions
    2. 5.2 UCC21542 Pin Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Power Ratings
    6. 6.6  Insulation Specifications
    7. 6.7  Safety-Limiting Values
    8. 6.8  Electrical Characteristics
    9. 6.9  Switching Characteristics
    10. 6.10 Insulation Characteristics Curves
    11. 6.11 Typical Characteristics
  8. Parameter Measurement Information
    1. 7.1 Minimum Pulses
    2. 7.2 Propagation Delay and Pulse Width Distortion
    3. 7.3 Rising and Falling Time
    4. 7.4 Input and Disable Response Time
    5. 7.5 Programmable Dead Time
    6. 7.6 Power-Up UVLO Delay to OUTPUT
    7. 7.7 CMTI Testing
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 VDD, VCCI, and Under Voltage Lock Out (UVLO)
      2. 8.3.2 Input and Output Logic Table
      3. 8.3.3 Input Stage
      4. 8.3.4 Output Stage
      5. 8.3.5 Diode Structure in the UCC2154x
    4. 8.4 Device Functional Modes
      1. 8.4.1 Disable Pin
      2. 8.4.2 Programmable Dead Time (DT) Pin
        1. 8.4.2.1 DT Pin Tied to VCCI
        2. 8.4.2.2 Connecting a Programming Resistor between DT and GND Pins
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Designing INA/INB Input Filter
        2. 9.2.2.2 Select Dead Time Resistor and Capacitor
        3. 9.2.2.3 Select External Bootstrap Diode and Its Series Resistor
        4. 9.2.2.4 Gate Driver Output Resistor
        5. 9.2.2.5 Gate to Source Resistor Selection
        6. 9.2.2.6 Estimating Gate Driver Power Loss
        7. 9.2.2.7 Estimating Junction Temperature
        8. 9.2.2.8 Selecting VCCI, VDDA/B Capacitor
          1. 9.2.2.8.1 Selecting a VCCI Capacitor
          2. 9.2.2.8.2 Selecting a VDDA (Bootstrap) Capacitor
          3. 9.2.2.8.3 Select a VDDB Capacitor
        9. 9.2.2.9 Application Circuits with Output Stage Negative Bias
      3. 9.2.3 Application Curves
  11. 10Power Supply Recommendations
  12. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Component Placement Considerations
      2. 11.1.2 Grounding Considerations
      3. 11.1.3 High-Voltage Considerations
      4. 11.1.4 Thermal Considerations
    2. 11.2 Layout Example
  13. 12Device and Documentation Support
    1. 12.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Support Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  14. 13Revision History
  15. 14Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DWK|14
  • DW|16
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Gate to Source Resistor Selection

A gate to source resistor, RGS, is recommended to pull down the gate to the source voltage when the gate driver output is unpowered and in an indeterminate state. This resistor also helps to mitigate the risk of dv/dt induced turn-on due to Miller current before the gate driver is able to turn on and actively pull low. This resistor is typically sized between 5.1kΩ and 20kΩ, depending on the Vth and ratio of CGD to CGS of the power device.