SLUSDE1E September   2018  – November 2024 UCC21540 , UCC21540A , UCC21541 , UCC21542

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1. 5.1 Pin Configuration and Functions
    2. 5.2 UCC21542 Pin Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Power Ratings
    6. 6.6  Insulation Specifications
    7. 6.7  Safety-Limiting Values
    8. 6.8  Electrical Characteristics
    9. 6.9  Switching Characteristics
    10. 6.10 Insulation Characteristics Curves
    11. 6.11 Typical Characteristics
  8. Parameter Measurement Information
    1. 7.1 Minimum Pulses
    2. 7.2 Propagation Delay and Pulse Width Distortion
    3. 7.3 Rising and Falling Time
    4. 7.4 Input and Disable Response Time
    5. 7.5 Programmable Dead Time
    6. 7.6 Power-Up UVLO Delay to OUTPUT
    7. 7.7 CMTI Testing
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 VDD, VCCI, and Under Voltage Lock Out (UVLO)
      2. 8.3.2 Input and Output Logic Table
      3. 8.3.3 Input Stage
      4. 8.3.4 Output Stage
      5. 8.3.5 Diode Structure in the UCC2154x
    4. 8.4 Device Functional Modes
      1. 8.4.1 Disable Pin
      2. 8.4.2 Programmable Dead Time (DT) Pin
        1. 8.4.2.1 DT Pin Tied to VCCI
        2. 8.4.2.2 Connecting a Programming Resistor between DT and GND Pins
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Designing INA/INB Input Filter
        2. 9.2.2.2 Select Dead Time Resistor and Capacitor
        3. 9.2.2.3 Select External Bootstrap Diode and Its Series Resistor
        4. 9.2.2.4 Gate Driver Output Resistor
        5. 9.2.2.5 Gate to Source Resistor Selection
        6. 9.2.2.6 Estimating Gate Driver Power Loss
        7. 9.2.2.7 Estimating Junction Temperature
        8. 9.2.2.8 Selecting VCCI, VDDA/B Capacitor
          1. 9.2.2.8.1 Selecting a VCCI Capacitor
          2. 9.2.2.8.2 Selecting a VDDA (Bootstrap) Capacitor
          3. 9.2.2.8.3 Select a VDDB Capacitor
        9. 9.2.2.9 Application Circuits with Output Stage Negative Bias
      3. 9.2.3 Application Curves
  11. 10Power Supply Recommendations
  12. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Component Placement Considerations
      2. 11.1.2 Grounding Considerations
      3. 11.1.3 High-Voltage Considerations
      4. 11.1.4 Thermal Considerations
    2. 11.2 Layout Example
  13. 12Device and Documentation Support
    1. 12.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Support Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  14. 13Revision History
  15. 14Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DWK|14
  • DW|16
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Switching Characteristics

VVCCI = 3.3 V or 5.5 V, 0.1-µF capacitor from VCCI to GND, VVDDA = VVDDB = 15 V, 1-µF capacitor from VDDA and VDDB to VSSA and VSSB, load capacitance COUT = 0 pF, TA = –40°C to +125°C unless otherwise noted(1).
PARAMETERTEST CONDITIONSMINTYPMAXUNIT
tRISE UCC21540/A, UCC21542/A Output rise time
See Figure 7-4.
CVDD = 10 µF, COUT = 1.8 nF,
VVDDA, VVDDB = 12 V, f = 1 kHz
5 16 ns
UCC21541 Output rise time
See Figure 7-4.
8 20
tFALL UCC21540/A, UCC21542/A Output fall time
See Figure 7-4.
CVDD = 10 µF, COUT = 1.8 nF ,
VVDDA, VVDDB = 12 V, f = 1 kHz
6 12 ns
UCC21541 Output fall time
See Figure 7-4.
9 15
tPWmin Minimum input pulse width that passes to output
See Figure 7-1 and Figure 7-2.
Output does not change the state if input signal less than tPWmin 20 ns
tPDHL Propagation delay at falling edge
See Figure 7-3.
INx high threshold, VINH, to 10% of the output 26 33 45 ns
tPDLH Propagation delay at rising edge
See Figure 7-3.
INx low threshold, VINL, to 90% of the output 26 33 45 ns
tPWD UCC21540/A, UCC21542/A Pulse width distortion |tPDLHA – tPDHLA|, |tPDLHB– tPDHLB|
See Figure 7-3.
6 ns
UCC21541 Pulse width distortion 6.5 ns
tDM Propagation delays matching,
|tPDLHA – tPDLHB|, |tPDHLA – tPDHLB|
See Figure 7-3.
Input Pulse Width = 100ns, 500kHz, TJ = -40°C to -10°C 6.5 ns
Input Pulse Width = 100ns, 500kHz, TJ = -10°C to +150°C 5 ns
tVCCI+ to OUT VCCI Power-up Delay Time: UVLO Rise to OUTA, OUTB,
See Figure 7-7.
INA or INB tied to VCCI 50 µs
tVDD+ to OUT VDDA, VDDB Power-up Delay Time: UVLO Rise to OUTA, OUTB
See Figure 7-8.
INA or INB tied to VCCI 10
|CMH| High-level common-mode transient immunity
See Section 7.7.
Slew rate of GND vs. VSSA/B, INA and INB both are tied to VCCI; VCM = 1000 V 125 V/ns
|CML| Low-level common-mode transient immunity
See Section 7.7.
Slew rate of GND vs. VSSA/B, INA and INB both are tied to GND; VCM = 1000 V 125
Parameters with only a typical value are provided for reference only, and do not constitute part of TI's published device specifications for purposes of TI's product warranty.