SLUSD95A March   2018  β€“ January 2024 UCC27511A

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 Handling Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Switching Characteristics
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 VDD and Undervoltage Lockout
      2. 6.3.2 Operating Supply Current
      3. 6.3.3 Input Stage
      4. 6.3.4 Enable Function
      5. 6.3.5 Output Stage
      6. 6.3.6 Low Propagation Delays
    4. 6.4 Device Functional Modes
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Input-to-Output Logic
        2. 7.2.2.2 Input Threshold Type
        3. 7.2.2.3 VDD Bias Supply Voltage
        4. 7.2.2.4 Peak Source and Sink Currents
        5. 7.2.2.5 Enable and Disable Function
        6. 7.2.2.6 Propagation Delay
        7. 7.2.2.7 Thermal Information
        8. 7.2.2.8 Power Dissipation
      3. 7.2.3 Application Curves
  9. Power Supply Recommendations
  10. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Third-Party Products Disclaimer
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Features

  • Input Pins Capable of Withstanding –5V Below GND pin
  • Low-Cost Gate-Driver Device Offering Superior Replacement of NPN and PNP Discrete Solutions
  • Strong Sink Current Offers Enhanced Immunity Against Miller Turnon
  • Split Output Configuration (Allows Easy and Independent Adjustment of Turnon and Turnoff Speeds)
  • Fast Propagation Delays (13ns typical)
  • Fast Rise and Fall Times (8ns and 7ns typical)
  • 4.5V to 18V Single Supply Range
  • Outputs Held Low During VDD UVLO (Ensures Glitch-Free Operation at Power Up and Power Down)
  • TTL and CMOS Compatible Input-Logic Threshold (Independent of Supply Voltage)
  • Wide Hysteresis (1V typical) for High-Noise Immunity
  • Dual-Input Design (Choice of an Inverting (IN– Pin) or Non-Inverting (IN+ Pin) Driver Configuration)
    • Unused Input Pin can be Used for Enable or Disable Function
  • Output Held Low when Input Pins are Floating
  • Input Pin Absolute Maximum Voltage Levels Not Restricted by VDD Pin Bias Supply Voltage