SGLS121D December   2002  – June 2020 UCC2800-Q1 , UCC2801-Q1 , UCC2802-Q1 , UCC2803-Q1 , UCC2804-Q1 , UCC2805-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Application Diagram
  4. Revision History
  5. Description (continued)
  6. Device Comparison Table
  7. Pin Configuration and Functions
    1.     Pin Functions
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Typical Characteristics
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Detailed Pin Description
        1. 9.3.1.1 COMP
        2. 9.3.1.2 FB
        3. 9.3.1.3 CS
        4. 9.3.1.4 RC
        5. 9.3.1.5 GND
        6. 9.3.1.6 OUT
        7. 9.3.1.7 VCC
        8. 9.3.1.8 Pin 8 (REF)
      2. 9.3.2  Undervoltage Lockout (UVLO)
      3. 9.3.3  Self-Biasing, Active Low Output
      4. 9.3.4  Reference Voltage
      5. 9.3.5  Oscillator
      6. 9.3.6  Synchronization
      7. 9.3.7  PWM Generator
      8. 9.3.8  Minimum Off-Time Setting (Dead-Time Control)
      9. 9.3.9  Leading Edge Blanking
      10. 9.3.10 Minimum Pulse Width
      11. 9.3.11 Current Limiting
      12. 9.3.12 Overcurrent Protection and Full Cycle Restart
      13. 9.3.13 Soft Start
      14. 9.3.14 Slope Compensation
    4. 9.4 Device Functional Modes
      1. 9.4.1 Normal Operation
      2. 9.4.2 UVLO Mode
      3. 9.4.3 Soft Start Mode
      4. 9.4.4 Fault Mode
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Current Sensing Network
        2. 10.2.2.2 Gate Drive Resistor
        3. 10.2.2.3 Vref Capacitor
        4. 10.2.2.4 RTCT
        5. 10.2.2.5 Start-Up Circuit
        6. 10.2.2.6 Voltage Feedback Compensation
          1. 10.2.2.6.1 Power Stage Gain, Zeroes, and Poles
          2. 10.2.2.6.2 Compensation Loop
      3. 10.2.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Community Resources
    2. 13.2 Trademarks
    3. 13.3 Related Links
    4. 13.4 Electrostatic Discharge Caution
    5. 13.5 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|8
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Start-Up Circuit

At startup, the IC gets its power directly from the high voltage bulk, through a high voltage resistor RH. The selection of start-up resistor is the tradeoff between power loss and start-up time. The current flowing through RH at minimum input voltage must be higher than the VCC current under UVLO condition (0.2 mA at its maximum value). A 150-kΩ resistor is chosen as the result of the tradeoff.

After VCC is charged up above UVLO on threshold, UCC2800-Q1 starts to operate and consumes full operating current. At the beginning, because the output voltage is low, VCC cannot get energy from the auxiliary winding. VCC capacitor requires to hold enough energy to prevent its voltage drop below UVLO during start-up time, before output reaches high enough. A larger capacitor holds more energy but slows down the start-up time. In this design, a 120-µF capacitor is chosen to provide enough energy for the start-up purpose.