SLUSAO7C September   2011  â€“ July 2024 UCC28063

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Principles of Operation
      2. 7.3.2  Natural Interleaving
      3. 7.3.3  On-Time Control, Maximum Frequency Limiting, and Restart Timer
      4. 7.3.4  Distortion Reduction
      5. 7.3.5  Zero-Current Detection and Valley Switching
      6. 7.3.6  Phase Management and Light-Load Operation
      7. 7.3.7  External Disable
      8. 7.3.8  Improved Error Amplifier
      9. 7.3.9  Soft Start
      10. 7.3.10 Brownout Protection
      11. 7.3.11 Dropout Detection
      12. 7.3.12 VREF
      13. 7.3.13 VCC
      14. 7.3.14 Control of Downstream Converter
      15. 7.3.15 System Level Protections
        1. 7.3.15.1 Failsafe OVP - Output Overvoltage Protection
        2. 7.3.15.2 Overcurrent Protection
        3. 7.3.15.3 Open-Loop Protection
        4. 7.3.15.4 VCC Undervoltage Lock-Out (UVLO) Protection
        5. 7.3.15.5 Phase-Fail Protection
        6. 7.3.15.6 CS-Open, TSET-Open and -Short Protection
        7. 7.3.15.7 Thermal Shutdown Protection
        8. 7.3.15.8 AC-Line Brownout and Dropout Protections
        9. 7.3.15.9 Fault Logic Diagram
    4. 7.4 Device Functional Modes
  9. Applications and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Inductor Selection
        2. 8.2.2.2  ZCD Resistor Selection (RZA, RZB)
        3. 8.2.2.3  HVSEN
        4. 8.2.2.4  Output Capacitor Selection
        5. 8.2.2.5  Selecting (RS) For Peak Current Limiting
        6. 8.2.2.6  Power Semiconductor Selection (Q1, Q2, D1, D2)
        7. 8.2.2.7  Brownout Protection
        8. 8.2.2.8  Converter Timing
        9. 8.2.2.9  Programming VOUT
        10. 8.2.2.10 Voltage Loop Compensation
      3. 8.2.3 Application Curves
        1. 8.2.3.1 Input Ripple Current Cancellation with Natural Interleaving
        2. 8.2.3.2 Brownout Protection
  10. Power Supply Recommendations
  11. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
        1. 11.1.1.1 Related Parts
      2. 11.1.2 Device Nomenclature
        1. 11.1.2.1 Detailed Pin Description
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Inductor Selection

The boost inductor is selected based on the inductor ripple current requirements at the peak of low line. Selecting the inductor requires calculating the boost converter duty cycle at the peak of low line (DPEAK_LOW_LINE), as shown in Equation 18.

Equation 18. UCC28063

The minimum switching frequency of the converter (fMIN) under low line conditions occurs at the peak of low line and is set between 25 kHz and 50 kHz to avoid audible noise. For this design example, fMIN is set to 45 kHz. For a 2-phase interleaved design, L1 and L2 are determined as shown in Equation 19.

Equation 19. UCC28063

The inductor for this design would have a peak current (ILPEAK) of 5.4 A, as shown in Equation 20, and an RMS current (ILRMS) of 2.2 A, as shown in Equation 21.

Equation 20. UCC28063
Equation 21. UCC28063

This converter uses constant on time (TON) and zero-current detection (ZCD) to set up the converter timing. Auxiliary windings on L1 and L2 detect when the inductor currents are zero. Selecting the turns ratio using Equation 22 ensures that there will be at least 2 V at the peak of high line to reset the ZCD comparator after every switching cycle.

The turns-ratio of each auxiliary winding is:

Equation 22. UCC28063