SLUSCR9B June   2017  – December 2020 UCC28730-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Switching Characteristics
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Detailed Pin Description
        1. 7.3.1.1 VDD (Device Bias Voltage Supply)
        2. 7.3.1.2 GND (Ground)
        3. 7.3.1.3 HV (High Voltage Startup)
        4. 7.3.1.4 DRV (Gate Drive)
        5. 7.3.1.5 CBC (Cable Compensation)
        6. 7.3.1.6 VS (Voltage Sense)
        7. 7.3.1.7 CS (Current Sense)
      2. 7.3.2 Primary-Side Regulation (PSR)
      3. 7.3.3 Primary-Side Constant Voltage Regulation
      4. 7.3.4 Primary-Side Constant Current Regulation
      5. 7.3.5 Wake-Up Detection and Function
      6. 7.3.6 Valley-Switching and Valley-Skipping
      7. 7.3.7 Startup Operation
      8. 7.3.8 Fault Protection
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Stand-By Power Estimate
        2. 8.2.2.2 Input Bulk Capacitance and Minimum Bulk Voltage
        3. 8.2.2.3 Transformer Turns Ratio, Inductance, Primary-Peak Current
        4. 8.2.2.4 Transformer Parameter Verification
        5. 8.2.2.5 Output Capacitance
        6. 8.2.2.6 VDD Capacitance, CVDD
        7. 8.2.2.7 VS Resistor Divider, Line Compensation, and Cable Compensation
        8. 8.2.2.8 VS Wake-Up Detection
      3. 8.2.3 Application Curves
    3. 8.3 Do's and Don'ts
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Device Nomenclature
        1. 11.1.1.1  Capacitance Terms in Farads
        2. 11.1.1.2  Duty-Cycle Terms
        3. 11.1.1.3  Frequency Terms in Hertz
        4. 11.1.1.4  Current Terms in Amperes
        5. 11.1.1.5  Current and Voltage Scaling Terms
        6. 11.1.1.6  Transformer Terms
        7. 11.1.1.7  Power Terms in Watts
        8. 11.1.1.8  Resistance Terms in Ω
        9. 11.1.1.9  Timing Terms in Seconds
        10. 11.1.1.10 DC Voltage Terms in Volts
        11. 11.1.1.11 AC Voltage Terms in Volts
        12. 11.1.1.12 Efficiency Terms
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Support Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Overview

The UCC28730-Q1 is an isolated-flyback power supply controller which provides accurate voltage and constant current regulation using primary-side winding sensing, eliminating the need for opto-coupler feedback circuits. The controller operates in discontinuous conduction mode with valley switching to minimize switching losses. The modulation scheme is a combination of frequency modulation and primary peak-current modulation to provide high conversion efficiency across the load range. The control law provides a wide dynamic operating range of output power which facilitates the achievement of <5-mW stand-by power.

During low-power operating levels the device has power management features to reduce the device operating current at switching frequencies less than 28 kHz. The UCC28730-Q1 includes features in the pulse-width modulator to reduce the EMI peak energy at the fundamental switching frequency and its harmonics. Accurate voltage and current regulation, fast dynamic response, and fault protection are achieved with primary-side control. A complete charger solution can be realized with a straightforward design process, low cost, and low component-count.