SLUSD71A April   2018  – May 2018 UCC28742

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
      2.      Typical Efficiency of a 10-W, 5-V AC-to-DC Converter
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Detailed Pin Description
        1. 7.3.1.1 VDD (Device Bias Voltage Supply)
        2. 7.3.1.2 GND (Ground)
        3. 7.3.1.3 VS (Voltage-Sense)
        4. 7.3.1.4 DRV (Gate Drive)
        5. 7.3.1.5 CS (Current Sense)
        6. 7.3.1.6 FB (Feedback)
      2. 7.3.2 Secondary-Side Optically Coupled Constant-Voltage (CV) Regulation
      3. 7.3.3 Control Law
      4. 7.3.4 Constant Current Limit and Delayed Shutdown
      5. 7.3.5 Valley-Switching and Valley-Skipping
      6. 7.3.6 Start-Up Operation
      7. 7.3.7 Fault Protection
    4. 7.4 Device Functional Modes
  8. Applications and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Custom Design With WEBENCH® Tools
        2. 8.2.2.2  VDD Capacitance, CDD
        3. 8.2.2.3  VDD Start-Up Resistance, RSTR
        4. 8.2.2.4  Input Bulk Capacitance and Minimum Bulk Voltage
        5. 8.2.2.5  Transformer Turns Ratio, Inductance, Primary-Peak Current
        6. 8.2.2.6  Transformer Parameter Verification
        7. 8.2.2.7  VS Resistor Divider and Line Compensation
        8. 8.2.2.8  Standby Power Estimate
        9. 8.2.2.9  Output Capacitance
        10. 8.2.2.10 Feedback Loop Design Consideration
      3. 8.2.3 Application Curves
    3. 8.3 Do's and Don'ts
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
        1. 11.1.1.1 Custom Design With WEBENCH® Tools
      2. 11.1.2 Device Nomenclature
        1. 11.1.2.1  Capacitance Terms in Farads
        2. 11.1.2.2  Duty Cycle Terms
        3. 11.1.2.3  Frequency Terms in Hertz
        4. 11.1.2.4  Current Terms in Amperes
        5. 11.1.2.5  Current and Voltage Scaling Terms
        6. 11.1.2.6  Transformer Terms
        7. 11.1.2.7  Power Terms in Watts
        8. 11.1.2.8  Resistance Terms in Ω
        9. 11.1.2.9  Timing Terms in Seconds
        10. 11.1.2.10 Voltage Terms in Volts
        11. 11.1.2.11 AC Voltage Terms in VRMS
        12. 11.1.2.12 Efficiency Terms
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

DRV (Gate Drive)

The DRV pin is connected to the MOSFET gate pin, usually through a series resistor. The DRV provides a gate drive signal which is clamped to 10-V internally. During turn-on the driver applies a typical 30-mA current source out of the DRV pin. When the DRV voltage rises to above 9 V the output current is reduced to about 100 µA. This current brings the DRV voltage to the 10-V clamp level, or to VDD, whichever is less. The 30-mA current provides adequate turn-on speed while automatically limiting noise generated at turn-on by the MOSFET drain dv/dt and by the leading edge turn-on current spike. The gate drive turn-off current is internally limited to about 400 mA when DRV is above about 4 V. At lower DRV voltages the current will reduce, eventually being limited by the low-side on resistance, RDS(on). The drain turn-on and turn-off dv/dt can be further impacted by adding external resistor in series with DRV pin. The drain current resonances can be damped with a small series gate resistor, generally less than a 1 Ω.