SLUSEW0 December   2023 UCC28750

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Timing Requirements
    8. 6.8 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Detailed Pin Descriptions
      1. 7.3.1 VDD - Input Bias
      2. 7.3.2 DRV - Gate Drive Out
      3. 7.3.3 CS - Current Sensing
      4. 7.3.4 FB - Feedback
      5. 7.3.5 FLT - Fault
      6. 7.3.6 GND - Ground Return
    4. 7.4 Feature Description
      1. 7.4.1 Soft Start
      2. 7.4.2 Control Law
      3. 7.4.3 Frequency Dithering
      4. 7.4.4 Fault Protections
        1. 7.4.4.1 VDD Overvoltage and Undervoltage Lockout
        2. 7.4.4.2 Internal Overtemperature Protection
        3. 7.4.4.3 Output Overpower Protection
        4. 7.4.4.4 Output Short-Circuit Protection
        5. 7.4.4.5 FLT Pin Protections
      5. 7.4.5 Slope Compensation
    5. 7.5 Device Functional Modes
      1. 7.5.1 Off
      2. 7.5.2 Startup
      3. 7.5.3 On
      4. 7.5.4 Fault
      5. 7.5.5 Disabled
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Application
      2. 8.2.2 Design Requirements
      3. 8.2.3 Detailed Design Procedure
        1. 8.2.3.1 Input Bulk Capacitance with Minimum Bulk Voltage
        2. 8.2.3.2 Transformer Turns Ratio and Inductance
        3. 8.2.3.3 Current Sense and Slope Compensation Network
        4. 8.2.3.4 Output Capacitors
        5. 8.2.3.5 VDD Capacitance, CVDD
      4. 8.2.4 Application Performance Plots
        1. 8.2.4.1 Startup
        2. 8.2.4.2 Load Transients
        3. 8.2.4.3 Q1 Drain Voltage Evaluation
      5. 8.2.5 What to Do and What Not to Do
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Input Bulk Capacitance with Minimum Bulk Voltage

The bulk capacitance can consist of a set of one or more capacitors connected in parallel, often with some inductance between them to suppress differential mode noise. Input EMI filter design is outside the scope of this data sheet and is not discussed.

The mimimum bulk voltage valley, Vbulk,min, is dependent on the total input capacitance value used in the power stage design. The input capacitor is chosen to maintain an acceptable input voltage ripple. The ripple is largest at the minimum input line at the largest output power scenario. Therefore, the input bulk capacitance is based on the a wanted Vbulk,min at the max power.

The input power can be estimated by taking the maximum output power and dividing the result by the estimated efficiency.

Equation 6. P in = Vout × I out,max η
Equation 7. Cbulk = 2 Pin × ( 1 4 + 1 2 π arcsin ( Vbulk,min ( 2 VIN min ) ) ( 2 VIN min ) 2 - ( V bulk,min ) 2

Where

  • Vbulk,min is the minimum DC bulk voltage
  • VINmin is the minimum AC voltage applied to the flyback application

For this design, the result from taking the design requirements and the plugging in those values to Equation 6 and Equation 7, a recommended minimum of 110μF for the bulk input capacitance.