SLUSEP2 December   2021 UCC28781

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Detailed Pin Description
      1. 7.3.1  BUR Pin (Programmable Burst Mode)
      2. 7.3.2  FB Pin (Feedback Pin)
      3. 7.3.3  REF Pin (Internal 5-V Bias)
      4. 7.3.4  VDD Pin (Device Bias Supply)
      5. 7.3.5  P13 and SWS Pins
      6. 7.3.6  S13 Pin
      7. 7.3.7  IPC Pin (Intelligent Power Control Pin)
      8. 7.3.8  RUN Pin (Driver and Bias Source for Isolator)
      9. 7.3.9  PWMH and AGND Pins
      10. 7.3.10 PWML and PGND Pins
      11. 7.3.11 SET Pin
      12. 7.3.12 RTZ Pin (Sets Delay for Transition Time to Zero)
      13. 7.3.13 RDM Pin (Sets Synthesized Demagnetization Time for ZVS Tuning)
      14. 7.3.14 XCD Pin
      15. 7.3.15 CS, VS, and FLT Pins
    4. 7.4 Device Functional Modes
      1. 7.4.1  Adaptive ZVS Control with Auto-Tuning
      2. 7.4.2  Dead-Time Optimization
      3. 7.4.3  EMI Dither and Dither Fading Function
      4. 7.4.4  Control Law Across Entire Load Range
      5. 7.4.5  Adaptive Amplitude Modulation (AAM)
      6. 7.4.6  Adaptive Burst Mode (ABM)
      7. 7.4.7  Low Power Mode (LPM)
      8. 7.4.8  First Standby Power Mode (SBP1)
      9. 7.4.9  Second Standby Power Mode (SBP2)
      10. 7.4.10 Startup Sequence
      11. 7.4.11 Survival Mode of VDD (INT_STOP)
      12. 7.4.12 System Fault Protections
        1. 7.4.12.1  Brown-In and Brown-Out
        2. 7.4.12.2  Output Over-Voltage Protection (OVP)
        3. 7.4.12.3  Input Overvoltage Protection (IOVP)
        4. 7.4.12.4  Over-Temperature Protection (OTP) on FLT Pin
        5. 7.4.12.5  Over-Temperature Protection (OTP) on CS Pin
        6. 7.4.12.6  Programmable Over-Power Protection (OPP)
        7. 7.4.12.7  Peak Power Limit (PPL)
        8. 7.4.12.8  Output Short-Circuit Protection (SCP)
        9. 7.4.12.9  Over-Current Protection (OCP)
        10. 7.4.12.10 External Shutdown
        11. 7.4.12.11 Internal Thermal Shutdown
      13. 7.4.13 Pin Open/Short Protections
        1. 7.4.13.1 Protections on CS pin Fault
        2. 7.4.13.2 Protections on P13 pin Fault
        3. 7.4.13.3 Protections on RDM and RTZ pin Faults
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application Circuit
      1. 8.2.1 Design Requirements for a 60-W, 15-V ZVSF Bias Supply Application with a DC Input
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Input Bulk Capacitance and Minimum Bulk Voltage
        2. 8.2.2.2 Transformer Calculations
          1. 8.2.2.2.1 Primary-to-Secondary Turns Ratio (NPS)
          2. 8.2.2.2.2 Primary Magnetizing Inductance (LM)
          3. 8.2.2.2.3 Primary Winding Turns (NP)
          4. 8.2.2.2.4 Secondary Winding Turns (NS)
          5. 8.2.2.2.5 Auxiliary Winding Turns (NA)
          6. 8.2.2.2.6 Winding and Magnetic Core Materials
        3. 8.2.2.3 Calculation of ZVS Sensing Network
        4. 8.2.2.4 Calculation of BUR Pin Resistances
        5. 8.2.2.5 Calculation of Compensation Network
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1  General Considerations
      2. 10.1.2  RDM and RTZ Pins
      3. 10.1.3  SWS Pin
      4. 10.1.4  VS Pin
      5. 10.1.5  BUR Pin
      6. 10.1.6  FB Pin
      7. 10.1.7  CS Pin
      8. 10.1.8  AGND Pin
      9. 10.1.9  PGND Pin
      10. 10.1.10 Thermal Pad
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Receiving Notification of Documentation Updates
    2. 11.2 Support Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Calculation of BUR Pin Resistances

Referring back to Section 7.3.1, it is recommended that ABM is entered at no higher than 50% to 60% of full load. Equation 1 and Equation 2, or Equation 1 and Equation 4, provide two equations for calculating two unknowns for the BUR-pin resistor values. However, choose the target values of VCST(BUR), ΔVBUR(AAM), and ΔVBUR(LPM) first. Because the ratio of IBUR(AAM) to IBUR(LPM) is fixed at 1.852 (5 µA / 2.7 µA), it is necessary to target ΔVBUR(AAM) = 185 mV to ensure that ΔVBUR(LPM) = 100 mV, per guidance in Section 7.3.1.

The procedure to determine the value of VCST(BUR) is quite complex and is not provided in this datasheet. Instead, a soon-to-be-released UCC28781 Excel Calculator Tool automatically calculates this value based on user input and determines the VBUR target voltage VBUR_tgt. Using this target value, it further determines the appropriate values for RBUR2 and RBUR1 to meet the BUR pin targets based on user selections for the following set of equations.

Expected values are used to determine recommended resistances, then actual resistances are selected from standard value series and the resulting actual voltages are calculated from the selected resistor values. Actual voltage results should be close to the targeted values.

Calculate expected ΔVBUR(LPM) value based on ΔVBUR(AAM) target value.

Equation 38. V B U R ( L P M ) = I B U R ( L P M ) × R B U R 1 × R B U R 2 R B U R 1 + R B U R 2

Calculate the expected value for the parallel combination of RBUR1 with RBUR2.

Equation 39. R B U R 1 | | R B U R 2 = V B U R ( A A M ) I B U R ( A A M )

Calculate the recommended value for RBUR1 and choose a standard 1% tolerance value for RBUR1_act that is close to the recommended value.

Equation 40. R B U R 1 _ r e c = V B U R ( A A M ) I B U R ( A A M ) × V R E F V B U R _ t g t + V B U R ( A A M )

Calculate the recommended value for RBUR2 using RBUR1_act and choose a standard 1% tolerance value for RBUR2_act that is close to the recommended value.

Equation 41. R B U R 2 _ r e c = R B U R 1 ×   V B U R _ t g t + V B U R ( A A M ) V R E F -   V B U R _ t g t + V B U R ( A A M )

Calculate the actual values for VBUR, ΔVBUR(AAM), and ΔVBUR(LPM) using RBUR1_act and RBUR2_act.

Equation 42. V B U R _ a c t = V R E F × R B U R 2 R B U R 1 + R B U R 2 - I B U R ( A A M ) × R B U R 1 × R B U R 2 R B U R 1 + R B U R 2
Equation 43. V B U R ( A A M ) = I B U R ( A A M ) × R B U R 1 × R B U R 2 R B U R 1 + R B U R 2
Equation 44. V B U R ( L P M ) = I B U R ( L P M ) × R B U R 1 × R B U R 2 R B U R 1 + R B U R 2

Finally, verify that the total summation of the BUR voltage with hysteresis does not exceed the BUR-pin upper clamp voltage of 2.4 V.

Equation 45. V B U R _ a c t + V B U R ( A A M ) + V B U R ( L P M ) 2.4   V