SLUSEP2 December 2021 UCC28781
PRODUCTION DATA
The PWML pin is the primary-side switch gate-drive, for which ground return is referenced to the PGND pin. The strong driver with 0.5-A peak source and 1.9-A peak sink capability can control either a silicon power MOSFET with a higher gate-to-source capacitance, a cascode GaN, an E-mode gate-injection-transistor (GIT) GaN with continuous on-state current, or a GaN power IC with logic PWM input.
The maximum voltage level of PWML is clamped to the P13 pin voltage. The 13-V clamped gate voltage provides an optimal gate-drive for low on-state resistance and lower gate-driving loss. An external gate resistor in parallel with a fast recovery diode can be used to further reduce the turn-on speed without compromising the turn-off switching loss. Slower turn-on speed of the primary switch mitigates the voltage stress across the secondary-side rectifier when the SR switch is disabled in deep light-load condition, and reduces the switching-node dV/dt to a safe level for reducing stress on the high-voltage isolating SR driver. A decoupling capacitor much larger than the PWML capacitive loading should be placed between P13 and PGND pins to decouple the gate-drive loop to allow operation at higher switching frequency. The 15-ns propagation delay of the PWML driver enables a higher frequency operation and more consistent ZVS switching.
Figure 7-14 and Figure 7-15 shows the example PWML driving network for a GIT GaN device and for a silicon MOSFET, respectively. For the GIT GaN device case, resistor RG2 controls the turn-on speed. The turn-off speed can be maintained by the two fast recovery diodes, DG1 and DG2. RG1 provides a continuous driving path to maintain the on state and low on-resistance (RDS(on)) of a GIT GaN. CG avoids the small RG2 from affecting the on state current. PGND can be directly connected to the separate source terminal of a GIT GaN to achieve a Kelvin connection, so the driver loop parasitic inductance can be decoupled.
An internal low-voltage level shifter is included between PGND and the ground return pin for analog control signals (AGND), so PGND can be connected separately to the source pin of the Si-MOSFET (QL) to achieve a Kelvin connection, as shown in Figure 7-15. When hard switching condition occurs, the lumped parasitic capacitor on the switch node is discharged, so a positive voltage spike is created across RCS. In soft switching condition, the negative magnetizing current flowing through RCS can create a negative voltage spike on RCS. The level shifter is designed to handle 5-V positive transient spike and -1-V negative stress between PGND pin and AGND pin.