SLUS395K February 2000 – October 2015 UCC2817 , UCC2818 , UCC3817 , UCC3818
PRODUCTION DATA.
Refer to the PDF data sheet for device specific package drawings
As in any power supply design, tradeoffs between performance, cost, and size must be made. When selecting a power switch, calculate the total power dissipation in the switch for several different devices at the switching frequencies being considered for the converter. Total power dissipation in the switch is the sum of switching loss and conduction loss. Switching losses are the combination of the gate charge loss, COSS loss and turnon and turnoff losses:
where
Conduction loss is calculated as the product of the RDS(on) of the switch (at the worst case junction temperature) and the square of RMS current:
where
Calculating these losses and plotting against frequency gives a curve that enables the designer to determine either which device has the best performance at the desired switching frequency, or which switching frequency has the least total loss for a particular power switch. For the design example in Figure 9, an IRFP450 HEXFET from International Rectifier was chosen because of its low RDS(on) and its VDSS rating. The IRFP450 RDS(on) of 0.4 Ω and the maximum VDSS of 500 V made it an ideal choice. An excellent review of this procedure can be found in the Unitrode Power Supply Design Seminar SEM1200, Topic 6, Design Review: 140 W, [Multiple Output High Density DC/DC Converter].