SLUS458I July   2000  – June 2024 UCC28C40 , UCC28C41 , UCC28C42 , UCC28C43 , UCC28C44 , UCC28C45 , UCC38C40 , UCC38C41 , UCC38C42 , UCC38C43 , UCC38C44 , UCC38C45

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Detailed Pin Description
        1. 7.3.1.1 COMP
        2. 7.3.1.2 FB
        3. 7.3.1.3 CS
        4. 7.3.1.4 RT/CT
        5. 7.3.1.5 GND
        6. 7.3.1.6 OUT
        7. 7.3.1.7 VDD
        8. 7.3.1.8 VREF
      2. 7.3.2  Undervoltage Lockout
      3. 7.3.3  ±1% Internal Reference Voltage
      4. 7.3.4  Current Sense and Overcurrent Limit
      5. 7.3.5  Reduced-Discharge Current Variation
      6. 7.3.6  Oscillator Synchronization
      7. 7.3.7  Soft-Start Timing
      8. 7.3.8  Enable and Disable
      9. 7.3.9  Slope Compensation
      10. 7.3.10 Voltage Mode
    4. 7.4 Device Functional Modes
      1. 7.4.1 Normal Operation
      2. 7.4.2 UVLO Mode
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Input Bulk Capacitor and Minimum Bulk Voltage
        2. 8.2.2.2  Transformer Turns Ratio and Maximum Duty Cycle
        3. 8.2.2.3  Transformer Inductance and Peak Currents
        4. 8.2.2.4  Output Capacitor
        5. 8.2.2.5  Current Sensing Network
        6. 8.2.2.6  Gate Drive Resistor
        7. 8.2.2.7  VREF Capacitor
        8. 8.2.2.8  RT/CT
        9. 8.2.2.9  Start-Up Circuit
        10. 8.2.2.10 Voltage Feedback Compensation
          1. 8.2.2.10.1 Power Stage Poles and Zeroes
          2. 8.2.2.10.2 Slope Compensation
          3. 8.2.2.10.3 Open-Loop Gain
          4. 8.2.2.10.4 Compensation Loop
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 Precautions
        2. 8.4.1.2 Feedback Traces
        3. 8.4.1.3 Bypass Capacitors
        4. 8.4.1.4 Compensation Components
        5. 8.4.1.5 Traces and Ground Planes
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|8
  • DGK|8
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Undervoltage Lockout

Six sets of UVLO thresholds are available with turn-on and turnoff thresholds of: (14.5V and 9V), (8.4V and 7.6V), (7V and 6.6V) respectively. The first set is primarily intended for off-line and 48V distributed power applications, where the wider hysteresis allows for lower frequency operation and longer soft-starting time of the converter. The second group of UVLO options is ideal for high frequency DC-DC converters typically running from a 12VDC input. The third, and newest, set has been added to address battery powered and portable applications. Table 7-2 shows the maximum duty cycle and UVLO thresholds by device.

Table 7-2 UVLO Options
MAXIMUM
DUTY CYCLE (%)
UVLO ON
(V)
UVLO OFF
(V)
DEVICE
NUMBER
10014.59UCCx8C42
1008.47.6UCCx8C43
10076.6UCCx8C40
5014.59UCCx8C44
508.47.6UCCx8C45
5076.6UCCx8C41

During UVLO the IC draws less than 100µA of supply current. After crossing the turnon threshold, the device supply current increases to a maximum of 3mA, typically 2.3mA. This low start-up current allows the power supply designer to optimize the selection of the startup resistor value to provide a more efficient design. In applications where low component cost overrides maximum efficiency, the low run current of 2.3mA (typical) allows the control device to run directly through the single resistor to (+) rail, rather than requiring a bootstrap winding on the power transformer, along with a rectifier. The start and run resistor for this case must also pass enough current to allow driving the primary switching MOSFET, which may be a few milliamps in small devices.

UCC28C40 UCC28C41 UCC28C42 UCC28C43 UCC28C44 UCC28C45 UCC38C40 UCC38C41 UCC38C42 UCC38C43 UCC38C44 UCC38C45 UVLO ON and OFF ProfileFigure 7-2 UVLO ON and OFF Profile