SLUSCA5B December   2015  – January 2017 UCD3138064A

PRODUCTION DATA.  

  1. 1Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. 2Revision History
  3. 3Device Options
    1. 3.1 Device Comparison Table
  4. 4Pin Configuration and Functions
    1. 4.1 Pin Diagrams
  5. 5Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Characteristics
    7. 5.7 PMBus/SMBus/I2C Timing
    8. 5.8 Parametric Measurement Information
    9. 5.9 Typical Characteristics
  6. 6Detailed Description
    1. 6.1 Overview
    2. 6.2 ARM Processor
    3. 6.3 Memory
    4. 6.4 Feature Description
      1. 6.4.1  System Module
        1. 6.4.1.1 Address Decoder (DEC)
        2. 6.4.1.2 Memory Management Controller (MMC)
        3. 6.4.1.3 System Management (SYS)
        4. 6.4.1.4 Central Interrupt Module (CIM)
      2. 6.4.2  Peripherals
        1. 6.4.2.1 Digital Power Peripherals
          1. 6.4.2.1.1 Front End
          2. 6.4.2.1.2 DPWM Module
          3. 6.4.2.1.3 DPWM Events
          4. 6.4.2.1.4 High Resolution DPWM
          5. 6.4.2.1.5 Over Sampling
          6. 6.4.2.1.6 DPWM Interrupt Generation
          7. 6.4.2.1.7 DPWM Interrupt Scaling/Range
      3. 6.4.3  Synchronous Rectifier Dead Time Optimization Peripheral
      4. 6.4.4  Automatic Mode Switching
        1. 6.4.4.1 Phase Shifted Full Bridge Example
        2. 6.4.4.2 LLC Example
        3. 6.4.4.3 Mechanism For Automatic Mode Switching
      5. 6.4.5  DPWMC, Edge Generation, IntraMux
      6. 6.4.6  Filter
        1. 6.4.6.1 Loop Multiplexer
        2. 6.4.6.2 Fault Multiplexer
      7. 6.4.7  Communication Ports
        1. 6.4.7.1 SCI (UART) Serial Communication Interface
        2. 6.4.7.2 PMBUS/I2C
        3. 6.4.7.3 SPI
      8. 6.4.8  Timers
        1. 6.4.8.1 24-Bit Timer
        2. 6.4.8.2 16-Bit PWM Timers
        3. 6.4.8.3 Watchdog Timer
      9. 6.4.9  General Purpose ADC12
      10. 6.4.10 Miscellaneous Analog
      11. 6.4.11 Brownout
      12. 6.4.12 Global I/O
      13. 6.4.13 Temperature Sensor Control
      14. 6.4.14 I/O Mux Control
      15. 6.4.15 Current Sharing Control
      16. 6.4.16 Temperature Reference
    5. 6.5 Device Functional Modes
      1. 6.5.1 DPWM Modes Of Operation
        1. 6.5.1.1 Normal Mode
        2. 6.5.1.2 Phase Shifting
        3. 6.5.1.3 DPWM Multiple Output Mode
        4. 6.5.1.4 DPWM Resonant Mode
      2. 6.5.2 Triangular Mode
      3. 6.5.3 Leading Edge Mode
    6. 6.6 Memory
      1. 6.6.1 Register Maps
        1. 6.6.1.1 CPU Memory Map and Interrupts
          1. 6.6.1.1.1 Memory Map (After Reset Operation)
          2. 6.6.1.1.2 Memory Map (Normal Operation)
          3. 6.6.1.1.3 Memory Map (System and Peripherals Blocks)
        2. 6.6.1.2 Boot ROM
        3. 6.6.1.3 Customer Boot Program
        4. 6.6.1.4 Flash Management
        5. 6.6.1.5 Synchronous Rectifier MOSFET Ramp and IDE Calculation
  7. 7Applications, Implementation, and Layout
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 PCMC (Peak Current Mode Control) PSFB (Phase Shifted Full Bridge) Hardware Configuration Overview
        2. 7.2.2.2 DPWM Initialization for PSFB
          1. 7.2.2.2.1 DPWM Synchronization
        3. 7.2.2.3 Fixed Signals to Bridge
        4. 7.2.2.4 Dynamic Signals to Bridge
        5. 7.2.2.5 System Initialization for PCM
          1. 7.2.2.5.1 Use of Front Ends and Filters in PSFB
          2. 7.2.2.5.2 Peak Current Detection
          3. 7.2.2.5.3 Peak Current Mode (PCM)
      3. 7.2.3 Application Curves
      4. 7.2.4 Power Supply Recommendations
      5. 7.2.5 Layout
        1. 7.2.5.1 Device Grounding and Layout Guidelines
        2. 7.2.5.2 Layout Example
  8. 8Device and Documentation Support
    1. 8.1 Device Support
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
    3. 8.3 Receiving Notification of Documentation Updates
    4. 8.4 Community Resources
    5. 8.5 Trademarks
    6. 8.6 Electrostatic Discharge Caution
    7. 8.7 Glossary
  9. 9Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Device and Documentation Support

Device Support

The application firmware for the UCD3138064A is developed on Texas Instruments Code Composer Studio (CCS) integrated development environment (v3.3 recommended).

Device programming, real time debug and monitoring/configuration of key device parameters for certain power topologies are all available through Texas Instruments’ FUSION_DIGITAL_POWER_DESIGNER Graphical User Interface (http://www.ti.com/tool/fusion_digital_power_designer). The FUSION_DIGITAL_POWER_DESIGNER software application uses the PMBus protocol to communicate with the device over a serial bus using an interface adaptor known as the USB-TO-GPIO, available as an EVM from Texas Instruments (http://www.ti.com/tool/usb-to-gpio). PMBUS-based real-time debug capability is available through the ‘Memory Debugger’ tool within the Device GUI module of the FUSION_DIGITAL_POWER_DESIGNER GUI, which represents a powerful alternative over traditional JTAG-based approaches’.

The software application can also be used to program the devices, with a version of the tool known as FUSION_MFR_GUI optimized for manufacturing environments (http://www.ti.com/tool/fusion_mfr_gui). The FUSION_MFR_GUI tool supports multiple devices on a board, and includes built-in logging and reporting capabilities.

In terms of reference documentation, the following programmer’s manuals are available offering detailed information regarding the application and usage of UCD3138064A digital controller:

  1. UCD3138064A Programmer's Manual
  2. UCD3138064A Digital Power Peripheral Programmer's Manual Key topics covered in this manual include:
    • Digital Pulse Width Modulator (DPWM)
      • Modes of Operation (Normal/Multi/Phase-shift/Resonant etc)
      • Automatic Mode Switching
      • DPWMC, Edge Generation & Intra-Mux
    • Front End
      • Analog Front End
      • Error ADC or EADC
      • Front End DAC
      • Ramp Module
      • Successive Approximation Register Module
    • Filter
      • Filter Math
    • Loop Mux
      • Analog Peak Current Mode
      • Constant Current/Constant Power (CCCP)
      • Automatic Cycle Adjustment
    • Fault Mux
      • Analog Comparators
      • Digital Comparators
      • Fault Pin functions
      • DPWM Fault Action
      • Ideal Diode Emulation (IDE), DCM Detection
      • Oscillator Failure Detection
    • Register Map for all of the above peripherals in UCD3138064A
  3. UCD3138064A Monitoring and Communications Programmer’s Manual Key topics covered in this manual include:
    • ADC12
      • Control, Conversion, Sequencing & Averaging
      • Digital Comparators
      • Temperature Sensor
      • PMBUS Addressing
      • Dual Sample & Hold
    • Miscellaneous Analog Controls (Current Sharing, Brown-Out, Clock-Gating)
    • PMBUS Interface
    • General Purpose Input Output (GPIO)
    • Timer Modules
    • PMBus
    • Register Map for all of the above peripherals in UCD3138064A
  4. UCD3138064A ARM and Digital System Programmer’s Manual Key topics covered in this manual include:
    • Boot ROM & Boot Flash
      • BootROM Function
      • Memory Read/Write Functions
      • Checksum Functions
      • Flash Functions
      • Avoiding Program Flash Lock-Up
    • ARM7 Architecture
      • Modes of Operation
      • Hardware/Software Interrupts
      • Instruction Set
      • Dual State Inter-working (Thumb 16-bit Mode/ARM 32-bit Mode)
    • Memory & System Module
      • Address Decoder, DEC (Memory Mapping)
      • Memory Controller (MMC)
      • Central Interrupt Module
    • Register Map for all of the above peripherals in UCD3138064A
  5. FUSION_DIGITAL_POWER_DESIGNER for UCD31xx Isolated Power Applications – User Guide

In addition to the tools and documentation described above, for the most up to date information regarding evaluation modules, reference application firmware and application notes/design tips, visit http://www.ti.com/product/ucd3138064.

Documentation Support

Related Documentation

  1. UCD3138064A Programmer’s Manual (SLUUAD8)
  2. UCD3138 Digital Power Peripherals Programmer’s Manual (SLUU995)
  3. UCD3138 Monitoring & Communications Programmer’s Manual (SLUU996)
  4. UCD3138 ARM and Digital System Programmer’s Manual (SLUU994)
  5. FUSION_DIGITAL_POWER_DESIGNER for Isolated Power Applications (SLUA676)
  6. Code Composer Studio Development Tools v3.3 – Getting Started Guide, (SPRU509H)
  7. ARM7TDMI-S Technical Reference Manual
  8. System Management Bus (SMBus) Specification
  9. PMBus™ Power System Management Prototcol Specification

Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

    TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.
    Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

Trademarks

E2E is a trademark of Texas Instruments.

PMBus is a trademark of SMIF, Inc..

All other trademarks are the property of their respective owners.

Electrostatic Discharge Caution

esds-image

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Glossary

SLYZ022TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.