SLUS645F February 2005 – December 2014 UCD7201
PRODUCTION DATA.
The UCD7K devices accept a supply range of 4.5 V to 15 V. The device has an internal precision linear regulator that produces the 3V3 output from this VDD input. A separate pin, PVDD, not connected internally to the VDD supply rail provides power for the output drivers. In all applications the same bus voltage supplies the two pins. It is recommended that a low value of resistance be placed between the two pins so that the local capacitance on each pin forms low pass filters to attenuate any switching noise that may be on the bus.
Although quiescent VDD current is low, total supply current depends on the gate drive output current required for capacitive load and switching frequency. Total VDD current is the sum of quiescent VDD current and the average OUT current. Knowing the operating frequency and the MOSFET gate charge (QG), average OUT current can be calculated from:
IOUT = QG x f, where f is frequency.
For the best high-speed circuit performance, VDD bypass capacitors are recommended to prevent noise problems. A 4.7-μF ceramic capacitor should be located closest to the VDD and the AGND connection. In addition, a larger capacitor with relatively low ESR should be connected to the PVDD and PGND pin, to help deliver the high current peaks to the load. The capacitors should present a low impedance characteristic for the expected current levels in the driver application. The use of surface mount components for all bypass capacitors is highly recommended.