SBOS061C February   1997  â€“ October 2024 XTR105

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings #GUID-80F0CD5F-C345-42B2-B6A9-580512790460/R_DESCRIPTION_LI1
    2. 5.2 Recommended Operating Conditions
    3. 5.3 Thermal Information
    4. 5.4 Electrical Characteristics
    5. 5.5 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Linearization
        1. 6.3.1.1 High-Resistance RTDs
      2. 6.3.2 Voltage Regulator
      3. 6.3.3 Open-Circuit Protection
      4. 6.3.4 Reverse-Voltage Protection
      5. 6.3.5 Surge Protection
    4. 6.4 Device Functional Modes
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 External Transistor
      2. 7.1.2 Loop Power Supply
      3. 7.1.3 2-Wire and 3-Wire RTD Connections
      4. 7.1.4 Radio Frequency Interference
      5. 7.1.5 Error Analysis
    2. 7.2 Typical Applications
    3. 7.3 Layout
      1. 7.3.1 Layout Guidelines
  9. Device and Documentation Support
    1. 8.1 Documentation Support
      1. 8.1.1 Related Documentation
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|14
  • N|14
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Reverse-Voltage Protection

The XTR105 low compliance rating (7.5V) permits the use of various voltage protection methods without compromising operating range. Figure 6-4 shows a diode bridge circuit that allows normal operation even when the voltage connection lines are reversed. The bridge causes a two diode drop (approximately 1.4V) loss in loop-supply voltage. This results in a compliance voltage of approximately 9V—satisfactory for most applications. If a 1.4V drop in loop supply is too much, a diode can be inserted in series with the loop-supply voltage and the V+ pin. This protects against reverse output connection lines with only a 0.7V loss in loop-supply voltage.