SNAS298G August   2005  – January 2015 ADC128S102

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Specifications
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 ADC128S102 Operation
      2. 7.3.2 ADC128S102 Transfer Function
      3. 7.3.3 Analog Inputs
      4. 7.3.4 Digital Inputs and Outputs
    4. 7.4 Device Functional Modes
    5. 7.5 Programming
      1. 7.5.1 Serial Interface
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
    1. 9.1 Power Supply Sequence
    2. 9.2 Power Supply Noise Considerations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Specification Definitions
    2. 11.2 Trademarks
    3. 11.3 Electrostatic Discharge Caution
    4. 11.4 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

6 Specifications

6.1 Absolute Maximum Ratings

See (1)(2).
MIN MAX UNIT
Analog Supply Voltage VA −0.3 6.5 V
Digital Supply Voltage VD −0.3 VA + 0.3, max 6.5 V
Voltage on Any Pin to GND −0.3 VA +0.3 V
Input Current at Any Pin (3) –10 10 mA
Package Input Current(3) –20 20 mA
Power Dissipation at TA = 25°C See (4)
Junction Temperature 150 °C
Storage temperature, Tstg −65 150 °C
For soldering specifications: see product folder at www.ti.com and SNOA549
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.
(3) When the input voltage at any pin exceeds the power supplies (that is, VIN < AGND or VIN > VA or VD), the current at that pin should be limited to 10 mA. The 20 mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 10 mA to two.
(4) The absolute maximum junction temperature (TJmax) for this device is 150°C. The maximum allowable power dissipation is dictated by TJmax, the junction-to-ambient thermal resistance (θJA), and the ambient temperature (TA), and can be calculated using the formula PDMAX = (TJmax − TA)/θJA. In the 16-pin TSSOP, θJA is 96°C/W, so PDMAX = 1,200 mW at 25°C and 625 mW at the maximum operating ambient temperature of 105°C. Note that the power consumption of this device under normal operation is a maximum of 12 mW. The values for maximum power dissipation listed above will be reached only when the ADC128S102 is operated in a severe fault condition (e.g. when input or output pins are driven beyond the power supply voltages, or the power supply polarity is reversed). Obviously, such conditions should always be avoided.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2500 V
Machine model (MM) ±250
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Operating Temperature, TA –40 105 °C
VA Supply Voltage 2.7 5.25 V
VD Supply Voltage 2.7 VA V
Digital Input Voltage 0 VA V
Analog Input Voltage 0 VA V
Clock Frequency 8 16 MHz
(1) All voltages are measured with respect to GND = 0V, unless otherwise specified.

6.4 Thermal Information

THERMAL METRIC(1) ADC128S102 UNIT
PW
16 PINS
RθJA Junction-to-ambient thermal resistance 110 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 42
RθJB Junction-to-board thermal resistance 56
ψJT Junction-to-top characterization parameter 5
ψJB Junction-to-board characterization parameter 55
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

The following specifications apply for TA = 25°C, AGND = DGND = 0 V, fSCLK = 8 MHz to 16 MHz, fSAMPLE = 500 ksps to 1 MSPS, CL = 50pF, unless otherwise noted. MIN and MAX limits apply for TA = TMIN to TMAX.(2)
PARAMETER TEST CONDITIONS MIN TYP MAX(1) UNIT
STATIC CONVERTER CHARACTERISTICS
Resolution with No Missing Codes 12 Bits
INL Integral Non-Linearity (End Point Method) VA = VD = +3.0V –1 ±0.4 1 LSB
VA = VD = +5.0V –1.2 ±0.5 1.2 LSB
DNL Differential Non-Linearity VA = VD = +3.0V +0.4 0.9 LSB
−0.7 −0.2 LSB
VA = VD = +5.0V +0.7 1.5 LSB
−0.9 −0.4 LSB
VOFF Offset Error VA = VD = +3.0V –2.3 +0.8 2.3 LSB
VA = VD = +5.0V –2.3 +1.1 2.3 LSB
OEM Offset Error Match VA = VD = +3.0V –1.5 ±0.1 1.5 LSB
VA = VD = +5.0V –1.5 ±0.3 1.5 LSB
FSE Full Scale Error VA = VD = +3.0V –2.0 +0.8 2.0 LSB
VA = VD = +5.0V –2.0 +0.3 2.0 LSB
FSEM Full Scale Error Match VA = VD = +3.0V –1.5 ±0.1 1.5 LSB
VA = VD = +5.0V –1.5 ±0.3 1.5 LSB
DYNAMIC CONVERTER CHARACTERISTICS
FPBW Full Power Bandwidth (−3dB) VA = VD = +3.0V 8 MHz
VA = VD = +5.0V 11 MHz
SINAD Signal-to-Noise Plus Distortion Ratio VA = VD = +3.0V,
fIN = 40.2 kHz, −0.02 dBFS
70 73 dB
VA = VD = +5.0V,
fIN = 40.2 kHz, −0.02 dBFS
70 73 dB
SNR Signal-to-Noise Ratio VA = VD = +3.0V,
fIN = 40.2 kHz, −0.02 dBFS
70.8 73 dB
VA = VD = +5.0V,
fIN = 40.2 kHz, −0.02 dBFS
70.8 73 dB
THD Total Harmonic Distortion VA = VD = +3.0V,
fIN = 40.2 kHz, −0.02 dBFS
−88 −74 dB
VA = VD = +5.0V,
fIN = 40.2 kHz, −0.02 dBFS
−90 −74 dB
SFDR Spurious-Free Dynamic Range VA = VD = +3.0V,
fIN = 40.2 kHz, −0.02 dBFS
75 91 dB
VA = VD = +5.0V,
fIN = 40.2 kHz, −0.02 dBFS
75 92 dB
ENOB Effective Number of Bits VA = VD = +3.0V,
fIN = 40.2 kHz
11.3 11.8 Bits
VA = VD = +5.0V,
fIN = 40.2 kHz, −0.02 dBFS
11.3 11.8 Bits
ISO Channel-to-Channel Isolation VA = VD = +3.0V,
fIN = 20 kHz
82 dB
VA = VD = +5.0V,
fIN = 20 kHz, −0.02 dBFS
84 dB
IMD Intermodulation Distortion, Second Order Terms VA = VD = +3.0V,
fa = 19.5 kHz, fb = 20.5 kHz
−89 dB
VA = VD = +5.0V,
fa = 19.5 kHz, fb = 20.5 kHz
−91 dB
Intermodulation Distortion, Third Order Terms VA = VD = +3.0V,
fa = 19.5 kHz, fb = 20.5 kHz
−88 dB
VA = VD = +5.0V,
fa = 19.5 kHz, fb = 20.5 kHz
−88 dB
ANALOG INPUT CHARACTERISTICS
VIN Input Range 0 to VA V
IDCL DC Leakage Current –1 1 µA
CINA Input Capacitance Track Mode 33 pF
Hold Mode 3 pF
DIGITAL INPUT CHARACTERISTICS
VIH Input High Voltage VA = VD = +2.7V to +3.6V 2.1 V
VA = VD = +4.75V to +5.25V 2.4 V
VIL Input Low Voltage VA = VD = +2.7V to +5.25V 0.8 V
IIN Input Current VIN = 0V or VD –1 ±0.01 1 µA
CIND Digital Input Capacitance 2 4 pF
DIGITAL OUTPUT CHARACTERISTICS
VOH Output High Voltage ISOURCE = 200 µA,
VA = VD = +2.7V to +5.25V
VD − 0.5 V
VOL Output Low Voltage ISINK = 200 µA to 1.0 mA,
VA = VD = +2.7V to +5.25V
0.4 V
IOZH, IOZL Hi-Impedance Output Leakage Current VA = VD = +2.7V to +5.25V –1 1 µA
COUT Hi-Impedance Output Capacitance (2) 2 4 pF
Output Coding Straight (Natural) Binary
POWER SUPPLY CHARACTERISTICS (CL = 10 pF)
VA, VD Analog and Digital Supply Voltages VA ≥ VD 2.7 5.25 V
IA + ID Total Supply Current
Normal Mode ( CS low)
VA = VD = +2.7V to +3.6V,
fSAMPLE = 1 MSPS, fIN = 40 kHz
0.76 1.5 mA
VA = VD = +4.75V to +5.25V,
fSAMPLE = 1 MSPS, fIN = 40 kHz
2.13 3.1 mA
Total Supply Current
Shutdown Mode (CS high)
VA = VD = +2.7V to +3.6V,
fSCLK = 0 ksps
20 nA
VA = VD = +4.75V to +5.25V,
fSCLK = 0 ksps
50 nA
PC Power Consumption
Normal Mode ( CS low)
VA = VD = +3.0V
fSAMPLE = 1 MSPS, fIN = 40 kHz
2.3 4.5 mW
VA = VD = +5.0V
fSAMPLE = 1 MSPS, fIN = 40 kHz
10.7 15.5 mW
Power Consumption
Shutdown Mode (CS high)
VA = VD = +3.0V
fSCLK = 0 ksps
0.06 µW
VA = VD = +5.0V
fSCLK = 0 ksps
0.25 µW
AC ELECTRICAL CHARACTERISTICS
fSCLKMIN Minimum Clock Frequency VA = VD = +2.7V to +5.25V 8 0.8 MHz
fSCLK Maximum Clock Frequency VA = VD = +2.7V to +5.25V 16 MHz
fS Sample Rate
Continuous Mode
VA = VD = +2.7V to +5.25V 500 50 ksps
1 MSPS
tCONVERT Conversion (Hold) Time VA = VD = +2.7V to +5.25V 13 SCLK cycles
DC SCLK Duty Cycle VA = VD = +2.7V to +5.25V 40% 30
70 60%
tACQ Acquisition (Track) Time VA = VD = +2.7V to +5.25V 3 SCLK cycles
Throughput Time Acquisition Time + Conversion Time
VA = VD = +2.7V to +5.25V
16 SCLK cycles
tAD Aperture Delay VA = VD = +2.7V to +5.25V 4 ns
(1) Tested limits are specified to TI's AOQL (Average Outgoing Quality Level).
(2) Data sheet min/max specification limits are ensured by design, test, or statistical analysis.

6.6 Timing Specifications

The following specifications apply for TA = 25°C, VA = VD = +2.7V to +5.25V, AGND = DGND = 0V, fSCLK = 8 MHz to 16 MHz, fSAMPLE = 500 ksps to 1 MSPS, and CL = 50pF. MIN and MAX apply for TA = TMIN to TMAX.
PARAMETER TEST CONDITIONS MIN TYP MAX(1) UNIT
tCSH CS Hold Time after SCLK Rising Edge 10 0 ns
tCSS CS Setup Time prior to SCLK Rising Edge 10 4.5 ns
tEN CS Falling Edge to DOUT enabled 5 30 ns
tDACC DOUT Access Time after SCLK Falling Edge 17 27 ns
tDHLD DOUT Hold Time after SCLK Falling Edge 4 ns
tDS DIN Setup Time prior to SCLK Rising Edge 10 3 ns
tDH DIN Hold Time after SCLK Rising Edge 10 3 ns
tCH SCLK High Time 0.4 x tSCLK ns
tCL SCLK Low Time 0.4 x tSCLK ns
tDIS CS Rising Edge to DOUT High-Impedance DOUT falling 2.4 20 ns
DOUT rising 0.9 20 ns
20136151.gifFigure 1. ADC128S102 Operational Timing Diagram
20136106.gifFigure 2. ADC128S102 Serial Timing Diagram
20136150.gifFigure 3. SCLK and CS Timing Parameters

6.7 Typical Characteristics

TA = +25°C, fSAMPLE = 1 MSPS, fSCLK = 16 MHz, fIN = 40.2 kHz unless otherwise stated.
20136140.pngFigure 4. DNL
20136142.pngFigure 6. INL
20136121.pngFigure 8. DNL vs. Supply
20136122.pngFigure 10. SNR vs. Supply
20136133.pngFigure 12. ENOB vs. Supply
20136131.pngFigure 14. INL vs. VD with VA = 5.0 V
20136158.pngFigure 16. INL vs. SCLK Duty Cycle
20136164.pngFigure 18. THD vs. SCLK Duty Cycle
20136156.pngFigure 20. DNL vs. SCLK
20136162.pngFigure 22. SNR vs. SCLK
20136153.pngFigure 24. ENOB vs. SCLK
20136160.pngFigure 26. INL vs. Temperature
20136166.pngFigure 28. THD vs. Temperature
20136123.pngFigure 30. SNR vs. Input Frequency
20136125.pngFigure 32. ENOB vs. Input Frequency
20136141.pngFigure 5. DNL
20136143.pngFigure 7. INL
20136120.pngFigure 9. INL vs. Supply
20136132.pngFigure 11. THD vs. Supply
20136130.pngFigure 13. DNL vs. VD with VA = 5.0 V
20136155.pngFigure 15. DNL vs. SCLK Duty Cycle
20136161.pngFigure 17. SNR vs. SCLK Duty Cycle
20136152.pngFigure 19. ENOB vs. SCLK Duty Cycle
20136159.pngFigure 21. INL vs. SCLK
20136165.pngFigure 23. THD vs. SCLK
20136157.pngFigure 25. DNL vs. Temperature
20136163.pngFigure 27. SNR vs. Temperature
20136154.pngFigure 29. ENOB vs. Temperature
20136124.pngFigure 31. THD vs. Input Frequency
20136144.pngFigure 33. Power Consumption vs. SCLK