SNOI146C September   2011  – December 2017 ADC141S628-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 ADC141S628-Q1 Converter Electrical Characteristics
    5. 6.5 ADC141S628-Q1 Timing Requirements
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Feature Description
      1. 7.2.1 Reference Input (VREF)
      2. 7.2.2 Analog Signal Inputs
      3. 7.2.3 Pseudo-Differential Operation
      4. 7.2.4 Serial Digital Interface
      5. 7.2.5 CS Input
      6. 7.2.6 SCLK Input
      7. 7.2.7 Data Output
    3. 7.3 Device Functional Modes
      1. 7.3.1 Power Consumption
        1. 7.3.1.1 Short Cycling
        2. 7.3.1.2 Burst Mode Operation
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Application Circuits
        1. 8.1.1.1 Data Acquisition
  9. Power Supply Recommendations
    1. 9.1 Analog and Digital Power Supplies
    2. 9.2 Voltage Reference
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 PCB Layout
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Device Nomenclature
        1. 11.1.1.1 Specification Definitions
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • DGS|10
サーマルパッド・メカニカル・データ
発注情報

Specifications

Absolute Maximum Ratings

If military/aerospace specified devices are required, please contact the Texas Instruments sales office, distributors for availability and specifications.(1)(2)
MIN MAX UNIT
VA relative to GND –0.3 6 V
VIO relative to GND –0.3 6 V
Voltage between any two pins(3) 6 V
Current in or out of any pin(3) ±10 mA
Package input current(3) ±50 mA
Power consumption at TA = 25°C See (4)
Junction temperature 150 °C
Storage temperature, Tstg –65 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages are measured with respect to GND = 0 V, unless otherwise specified.
When the input voltage (VIN) at any pin exceeds the power supplies (VIN < GND or VIN > VA), the current at that pin must be limited to 10 mA and VIN must be within the absolute maximum rating for that pin. The 50-mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 10 mA to five.
The absolute maximum junction temperature (TJmax) for this device is 150°C. The maximum allowable power dissipation is dictated by TJmax, the junction-to-ambient thermal resistance (θJA), and the ambient temperature (TA), and can be calculated using the formula PDMAX = (TJmax – TA) / θJA. The values for maximum power dissipation listed above are reached only when the ADC141S628-Q1 is operated in a severe fault condition (for example, when input or output pins are driven beyond the power supply voltages, or the power-supply polarity is reversed). These conditions must be avoided.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) ±4000 V
Charged-device model (CDM), per AEC Q100-011 ±1250
Machine model (MM) ±300
AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

Recommended Operating Conditions(1)(1)(2)

MIN NOM MAX UNIT
Operating temperature range –40 105 °C
Supply voltage, VA 4.5 5.5 V
Supply voltage, VIO 4.5 5.5 V
Reference voltage, VREF 1.0 VA V
SCLK frequency, fSCLK 0.9 3.6 MHz
Analog input pin, +IN GND VA V
Analog input pin, –IN GND ±150 mV mV
Analog input voltage GND VREF V
Digital input pins voltage range GND VIO V
Clock frequency 50k 3.6M Hz
All voltages are measured with respect to GND = 0 V, unless otherwise specified.
For soldering specifications, see the Absolute Maximum Ratings for Soldering application report.

ADC141S628-Q1 Converter Electrical Characteristics

The following specifications apply for VA = VIO = 5 V, VREF = 4.096 V, and fSCLK = 0.9 MHz to 3.6 MHz; fIN = 20 kHz and CL = 25 pF, unless otherwise noted. All specifications are at TA = 25°C, unless otherwise noted.(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
STATIC CONVERTER CHARACTERISTICS
Resolution with no missing codes TA = –40°C to +105°C 14 Bits
INL Integral nonlinearity ±0.5 LSB
TA = –15°C to +65°C ±0.95
TA = –40°C to +105°C ±1
DNL Differential nonlinearity ±0.5 LSB
TA = –40°C to +105°C ±0.95
PCTUE Post calibration total unadjusted error –15°C ≤ TA ≤ 65°C ±0.5 mV
–40°C ≤ TA ≤ 105°C –0.85 1
OE Offset error –1 LSB
TA = –40°C to +105°C ±5
FSE Full-scale error –3 LSB
TA = –40°C to +105°C ±7
GE Gain error –1.5 LSB
TA = –40°C to +105°C ±6
DYNAMIC CONVERTER CHARACTERISTICS
SINAD Signal-to-noise and distortion ratio VIN = –0.1 dBFS 82 dBc
VIN = –0.1 dBFS,
TA = –40°C to +105°C
80
SNR Signal-to-noise ratio VIN = –0.1 dBFS 82 dBc
VIN = –0.1 dBFS,
TA = –40°C to +105°C
80
THD Total harmonic distortion VIN = –0.1 dBFS –97 dBc
SFDR Spurious-free dynamic range VIN = –0.1 dBFS 98 dBc
ENOB Effective number of bits VIN = –0.1 dBFS 13.4 Bits
VIN = –0.1 dBFS,
TA = –40°C to +105°C
13.0
FPBW –3-dB full-power bandwidth Output at 70.7%FS with FS input, single-ended input 22 MHz
ANALOG INPUT CHARACTERISTICS
VIN (+IN) – (–IN) TA = –40°C to +105°C GND VREF V
+IN Noninverting input TA = –40°C to +105°C –0.15 VREF + 0.15 V
–IN Inverting input TA = –40°C to +105°C –0.15 0.15 V
IDCL DC leakage current VIN = VREF or VIN = 0,
TA = –40°C to +105°C
±1 µA
CINA Input capacitance In acquisition mode 14 pF
In conversion mode 3.4
CMRR Common-mode rejection ratio See the Specification Definitions section for the test condition 76 dB
DIGITAL INPUT CHARACTERISTICS
VIH Input high voltage 1.9 V
TA = –40°C to +105°C 2.3
VIL Input low voltage 1.0 V
TA = –40°C to +105°C 0.7
IIN Input current VIN = 0 V or VA,
TA = –40°C to +105°C
±1 µA
CIND Input capacitance 2 pF
TA = –40°C to +105°C 4
DIGITAL OUTPUT CHARACTERISTICS
VOH Output high voltage ISOURCE = 200 µA VA – 0.05 V
ISOURCE = 200 µA,
TA = –40°C to +105°C
VA – 0.2
ISOURCE = 1 mA VA – 0.16
VOL Output low voltage ISINK = 200 µA 0.01 V
ISINK = 200 µA,
TA = –40°C to +105°C
0.4
ISINK = 1 mA 0.05
IOZH, IOZL Tri-state leakage current Force 0 V or VA,
TA = –40°C to +105°C
±1 µA
COUT Tri-state output capacitance Force 0 V or VA 2 pF
Force 0 V or VA,
TA = –40°C to +105°C
4
Output coding Straight binary
POWER-SUPPLY CHARACTERISTICS
VA Analog supply voltage range TA = –40°C to +105°C 4.5 5.5 V
VIO Digital input/output supply voltage range(2) TA = –40°C to +105°C 4.5 5.5 V
VREF Reference voltage range TA = –40°C to +105°C 1.0 VA V
IVA (Conv) Analog supply current, conversion mode fSCLK = 3.6 MHz, fS = 200 kSPS 740 µA
fSCLK = 3.6 MHz, fS = 200 kSPS,
TA = –40°C to +105°C
970
IVIO (Conv) Digital I/O supply current, conversion mode fSCLK = 3.6 MHz, fS = 200 kSPS 170 µA
fSCLK = 3.6 MHz, fS = 200 kSPS,
TA = –40°C to +105°C
260
IVREF (Conv) Reference current, conversion mode fSCLK = 3.6 MHz, fS = 200 kSPS 45 µA
fSCLK = 3.6 MHz, fS = 200 kSPS,
TA = –40°C to +105°C
80
IVA (PD) Analog supply current, power-down mode (CS high) fSCLK = 3.6 MHz 8 µA
fSCLK = low 2
fSCLK = low, TA = –40°C to +105°C 3
IVIO (PD) Digital I/O supply current, power-down mode (CS high) fSCLK = 3.6 MHz 3 µA
fSCLK = low 0.1
fSCLK = low, TA = –40°C to +105°C 0.7
POWER-SUPPLY CHARACTERISTICS (continued)
IVREF (PD) Reference current, power-down mode (CS high) fSCLK = 3.6 MHz 0.1 µA
fSCLK = low 0.1
fSCLK = low, TA = –40°C to +105°C 0.2
PWR (Conv) Power consumption, conversion mode fSCLK = 3.6 MHz, fS = 200 kSPS 4.8 mW
fSCLK = 3.6 MHz, fS = 200 kSPS,
TA = –40°C to +105°C
6.5
PWR (PD) Power consumption, power-down mode (CS high) fSCLK = 0, VA = VIO = VREF = 5.0 V 11 µW
fSCLK = 0, VA = VIO = VREF = 5.0 V, TA = –40°C to +105°C 19.5
PSRR Power-supply rejection ratio See the Specification Definitions section for the test condition –85 dB
AC ELECTRICAL CHARACTERISTICS
fSCLK Minimum clock frequency TA = –40°C to +105°C 3.6 0.9 MHz
fS Maximum sample rate TA = –40°C to +105°C 200 kSPS
tACQ Acquisition, track time TA = –40°C to +105°C 833 ns
tCONV Conversion, hold time TA = –40°C to +105°C 15 SCLK cycles
tAD Aperture delay See the Specification Definitions section 6 ns
Typical values are at TJ = 25°C and represent most likely parametric norms. Test limits are specified to TI's average outgoing quality level (AOQL).
The value of VIO is independent of the value of VA. For example, VIO can be operating at 5 V while VA is operating at 4.5 V or VIO can be operating at 4.5 V while VA is operating at 5 V.

ADC141S628-Q1 Timing Requirements

The following specifications apply for VA = VIO = 5 V, VREF = 4.096 V, fSCLK = 0.9 MHz to 3.6 MHz, and CL = 25 pF, unless otherwise noted. All specifications are at TA = 25°C, unless otherwise noted.(1)
MIN NOM MAX UNIT
tCSS CS setup time prior to an SCLK rising edge 3 ns (min)
–40°C to +105°C 6 ns
1 / fSCLK – 3 ns (max)
–40°C to +105°C 1 / fSCLK – 6 ns
tDH DOUT hold time after an SCLK falling edge 10 ns (min)
–40°C to +105°C 6 ns
tDA DOUT access time after an SCLK falling edge 28 ns (max)
–40°C to +105°C 40 ns
tDIS DOUT disable time after the rising edge of CS(2) 10 ns (max)
20 ns
tCS Minimum CS pulse duration 5 ns (min)
–40°C to +105°C 20 ns
tEN DOUT enable time after the falling edge of CS 32 ns (max)
51 ns
tCH SCLK high time –40°C to +105°C 111 ns
tCL SCLK low time –40°C to +105°C 111 ns
tr DOUT rise time 7 ns
tf DOUT fall time 7 ns
Typical values are at TJ = 25°C and represent most likely parametric norms. Test limits are specified to TI's average outgoing quality level (AOQL).
tDIS is the time for DOUT to change 10% while being loaded by the timing test circuit (see Figure 2).
ADC141S628-Q1 30139101.gif Figure 1. ADC141S628-Q1 Single Conversion Timing Diagram
ADC141S628-Q1 30139108.gif Figure 2. Timing Test Circuit
ADC141S628-Q1 30139106.gif Figure 3. DOUT Rise and Fall Times
ADC141S628-Q1 30139111.gif Figure 4. DOUT Hold and Access Times
ADC141S628-Q1 30139110.gif Figure 5. Valid CS Assertion Times
ADC141S628-Q1 30139112.gif Figure 6. Voltage Waveform for tDIS

Typical Characteristics

VA = VIO = VREF = 5 V, fSCLK = 3.6 MHz, fSAMPLE = 200 kSPS, TA = +25°C, and fIN = 20 kHz (unless otherwise noted)
ADC141S628-Q1 30139104.gif
Figure 7. DNL vs VA
ADC141S628-Q1 30139103.gif
Figure 9. DNL vs VREF
ADC141S628-Q1 30139117.gif
Figure 11. DNL vs Temperature
ADC141S628-Q1 30139136.gif
Figure 13. THD vs VA
ADC141S628-Q1 30139125.gif
Figure 15. THD vs Temperature
ADC141S628-Q1 30139137.gif
Figure 17. THD vs Input Frequency
ADC141S628-Q1 30139140.gif
Figure 19. Gain and Offset Error vs Temperature
ADC141S628-Q1 30139134.gif
Figure 21. Max TUE vs Temperature
ADC141S628-Q1 30139171.gif
Figure 23. TUE vs Code Over Temperature
ADC141S628-Q1 30139145.gif
Figure 25. VA Current vs Temperature
ADC141S628-Q1 30139147.gif
Figure 27. VIO Current vs Temperature
ADC141S628-Q1 30139149.gif
Figure 29. VREF Current vs Temperature
ADC141S628-Q1 30139107.gif
Figure 8. INL vs VA
ADC141S628-Q1 30139114.gif
Figure 10. INL vs VREF
ADC141S628-Q1 30139120.gif
Figure 12. INL vs Temperature
ADC141S628-Q1 30139153.gif
Figure 14. SINAD vs VA
ADC141S628-Q1 30139121.gif
Figure 16. SINAD vs Temperature
ADC141S628-Q1 30139141.gif
Figure 18. SINAD vs Input Frequency
ADC141S628-Q1 30139139.gif
Figure 20. Gain and Offset Error vs VA
ADC141S628-Q1 30139135.gif
Figure 22. Min TUE vs Temperature
ADC141S628-Q1 30139113.gif
Figure 24. Typical Spectrum
ADC141S628-Q1 30139146.gif
Figure 26. VA Current vs VA
ADC141S628-Q1 30139148.gif
Figure 28. VIO Current vs VIO
ADC141S628-Q1 30139150.gif
Figure 30. VREF Current vs VREF