SLASE49B December   2015  – April 2017 ADC14X250

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics: Static Converter Performance
    6. 6.6  Electrical Characteristics: Dynamic Converter Performance
    7. 6.7  Electrical Characteristics: Power Supply
    8. 6.8  Electrical Characteristics: Analog Interface
    9. 6.9  Digital Input Characteristics
    10. 6.10 Electrical Characteristics: Serial Data Output Interface
    11. 6.11 Electrical Characteristics: Digital Input
    12. 6.12 Timing Requirements
    13. 6.13 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1 JESD204B Interface Functional Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Amplitude and Phase Imbalance Correction of Differential Analog Input
      2. 8.3.2  Input Clock Divider
      3. 8.3.3  SYSREF Offset Feature and Detection Gate
      4. 8.3.4  DC Offset Correction
      5. 8.3.5  Serial Differential Output Drivers
        1. 8.3.5.1 De-Emphasis Equalization
      6. 8.3.6  ADC Core Calibration
      7. 8.3.7  Data Format
      8. 8.3.8  JESD204B Supported Features
      9. 8.3.9  Transport Layer Configuration
        1. 8.3.9.1 Lane Configuration
        2. 8.3.9.2 Frame Format
        3. 8.3.9.3 ILA Information
      10. 8.3.10 Test Pattern Sequences
      11. 8.3.11 JESD204B Link Initialization
        1. 8.3.11.1 Frame Alignment
        2. 8.3.11.2 Code Group Synchronization
      12. 8.3.12 Sync~ Signal Selection
      13. 8.3.13 SPI
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power-Down and Sleep Modes
    5. 8.5 Register Map
      1. 8.5.1 Register Descriptions
        1. 8.5.1.1  CONFIG_A, [Address: 0x0000], [Default: 0x3C]
        2. 8.5.1.2  DEVICE CONFIG, [Address: 0x0002], [Default: 0x00]
        3. 8.5.1.3  CHIP_TYPE, [Address: 0x0003], [Default: 0x03]
        4. 8.5.1.4  CHIP_ID, [Address: 0x0005, 0x0004], [Default: 0x00, 0x01]
        5. 8.5.1.5  CHIP_VERSION, [Address: 0x0006], [Default: 0x00]
        6. 8.5.1.6  VENDOR_ID, [Address: 0x000D, 0x000C], [Default: 0x04, 0x51]
        7. 8.5.1.7  SPI_CFG, [Address: 0x0010], [Default: 0x01]
        8. 8.5.1.8  OM1 (Operational Mode 1), [Address: 0x0012], [Default: 0x81]
        9. 8.5.1.9  OM2 (Operational Mode 2), [Address: 0x0013], [Default: 0x20]
        10. 8.5.1.10 IMB_ADJ (Imbalance Adjust), [Address: 0x0014], [Default: 0x00]
        11. 8.5.1.11 DC_MODE (DC Offset Correction Mode), [Address: 0x003D], [Default: 0x00]
        12. 8.5.1.12 SER_CFG (Serial Lane Transmitter Configuration), [Address: 0x0047], [Default: 0x00]
        13. 8.5.1.13 JESD_CTRL1 (JESD Configuration Control 1) , [Address: 0x0060], [Default: 0x7D]
        14. 8.5.1.14 JESD_CTRL2 (JESD Configuration Control 2), [Address: 0x0061], [Default: 0x00]
        15. 8.5.1.15 JESD_RSTEP (JESD Ramp Pattern Step), [Addresses: 0x0063, 0x0062], [Default: 0x00, 0x01]
        16. 8.5.1.16 JESD_STATUS (JESD Link Status), [Address: 0x006C], [Default: N/A]
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Analog Input Considerations
        1. 9.1.1.1 Differential Analog Inputs and Full Scale Range
        2. 9.1.1.2 Analog Input Network Model
        3. 9.1.1.3 Input Bandwidth
        4. 9.1.1.4 Driving the Analog Input
        5. 9.1.1.5 Clipping
      2. 9.1.2 CLKIN, SYSREF, and SYNCb Input Considerations
        1. 9.1.2.1 Driving the CLKIN+ and CLKIN- Input
        2. 9.1.2.2 Clock Noise and Edge Rate
        3. 9.1.2.3 Driving the SYSREF Input
        4. 9.1.2.4 SYSREF Signaling
        5. 9.1.2.5 SYSREF Timing
        6. 9.1.2.6 Effectively Using the SYSREF Offset and Detection Gate Features
        7. 9.1.2.7 Driving the SYNCb Input
      3. 9.1.3 Output Serial Interface Considerations
        1. 9.1.3.1 Output Serial-Lane Interface
        2. 9.1.3.2 Voltage Swing and De-Emphasis Optimization
        3. 9.1.3.3 Minimizing EMI
      4. 9.1.4 JESD204B System Considerations
        1. 9.1.4.1 Frame and LMFC Clock Alignment Procedure
        2. 9.1.4.2 Link Interruption
        3. 9.1.4.3 Clock Configuration Examples
        4. 9.1.4.4 Configuring the JESD204B Receiver
      5. 9.1.5 SPI
    2. 9.2 Typical Applications
      1. 9.2.1 Design Requirements
      2. 9.2.2 Design Procedure
      3. 9.2.3 Application Performance Plot
      4. 9.2.4 Systems Example
  10. 10Power Supply Recommendations
    1. 10.1 Power Supply Design
    2. 10.2 Decoupling
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Layout Example
      2. 11.1.2 Thermal Considerations
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Related Documentation
        1. 12.1.1.1 Specification Definitions
        2. 12.1.1.2 JESD204B Definitions
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
Supply Voltage VA3.0 –0.3 4.2 V
VA1.8 –0.3 2.35 V
VA1.2 –0.3 1.55 V
Voltage at: VIN+, VIN– VCM – 0.75(4) VCM + 0.75 V
VCM –0.3 VA3.0 + 0.3, not to exceed 4.2 V V
SCLK, SDI, CSb –0.3 VA3.0 + 0.3, not to exceed 4.2 V V
SDO –0.3 VSPI + 0.3, not to exceed 4.2 V V
CLKIN+, CLKIN–, SYSREF+, SYSREF– –0.3 1.55 V
SYNC+, SYNC– –0.3 VBP2.5 + 0.3 V
BP2.5 –0.3 3.2 V
SO+, SO– –0.3 VBP2.5 + 0.3 V
Input current at any pin(3) 5 mA
TJ Operating junction temperature(2) 125 °C
Tstg Storage temperature range –65 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
Prolonged use at this temperature may increase the device failure-in-time (FIT) rate.
When the input voltage at any pin exceeds the VA3.0 power supply (that is VIN > VA3.0 or VIN < AGND) the current at that pin should be limited to ±5 mA. The ±50-mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of ±5 mA to 10 pins.
VCM refers to the voltage bias present at the VCM output. The Absolute Maximum Rating for the VIN+ and VIN– inputs may extend down to –0.3V for the purpose of the initial power-up transient only. Forcing these pins to a voltage lower than VCM – 0.75 for an extended time may reduce the operating lifetime of the device.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2500 V
Charged device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

Operation of the device beyond the recommended operating ratings is not recommended as it may degrade the device lifetime.
MIN MAX UNIT
TA-MIN Specified temperature minimum, ambient air. –40 °C
TA-MAX Specified temperature maximum, ambient air.(1) 85 °C
TP-MAX Specified temperature maximum, measured at the device's footprint thermal pad on the printed circuit board. 105 °C
TJ Operating junction temperature(2) 106 °C
This device may be operated above the maximum ambient temperature (TA-MAX) up to the value of TP-MAX as long as the maximum temperature at the device's footprint thermal pad on the printed circuit board remains less than TP-MAX.
The recommended maximum operating junction temperature assumes the junction to package bottom thermal resistance, RθJC(bottom) = 1.1°C/W, the thermal resistance of the device thermal pad connection to the PCB footprint is negligible, and the recommended maximum temperature at the PCB footprint thermal pad, TP-MAX, is satisfied.

Thermal Information

THERMAL METRIC(1) RHB (WQFN) UNIT
(32 PINS)
RθJA Thermal resistance, junction to ambient 31.4 °C/W
RθJC(top) Thermal resistance, junction to package top 50.2
RθJC(bottom) Thermal resistance, junction to package bottom 1.1
RθJB Thermal resistance, junction to board 5.1
φJT Characterization parameter, junction to package top 0.2
φJB Characterization parameter, junction to board 5.1
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Electrical Characteristics: Static Converter Performance

Unless otherwise noted, these specifications apply for VA3.0 = 3 V; VA1.8 = 1.8 V; VA1.2 = 1.2 V; FCLKIN = FS = 250 MSPS; external differential resistive termination at ADC input is 66 Ω. Typical values are at TA = 25°C, unless otherwise noted. Limit values specified for the temperature range TA-MIN = –40°C to TP-MAX = 105°C.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
RESOLUTION Bit resolution of ADC core 14 Bits
FSR Full scale range
Differential peak-to-peak
1.7 Vpp
GVAR Gain variation
1-sigma variation of full scale range across multiple units
±0.05 dB
VOFF Input referred voltage offset ±3 mV
DNL Differential non-linearity +0.27
–0.18
LSB
INL Integral non-linearity +1
–0.9
LSB

Electrical Characteristics: Dynamic Converter Performance

Unless otherwise noted, these specifications apply for VA3.0 = 3 V; VA1.8 = 1.8 V; VA1.2 = 1.2 V; FCLKIN = FS = 250 MSPS; external differential resistive termination at ADC input is 66 Ω. CLKIN± input is a 2 Vp-p differential sinusoid. Typical values are at TA = 25°C, unless otherwise noted. Limit values specified for the temperature range TA-MIN = –40°C to TP-MAX = 105°C.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
BW3dB 3-dB bandwidth
Frequency at which the voltage input to digital output response deviates by 3 dB compared to low frequencies for a low impedance differential signal applied at the input pins. Includes 0.5-nH parasitic inductance in series with each pin of the differential analog input.
800 MHz
SNR Signal-to-noise ratio, integrated across entire Nyquist bandwidth dBFS
Input = 10 MHz, –3 dBFS 71.1
Input = 70 MHz, –3 dBFS 70.9
Input = 170 MHz, –3 dBFS 70.5
Input = 240 MHz, –3 dBFS 68.3 70.1
Input = 240 MHz, –40 dBFS 71.1
Input = 300 MHz, –3 dBFS 69.7
SINAD Signal-to-noise and distortion ratio, integrated across Nyquist bandwidth dBFS
Input = 10 MHz, –3 dBFS 71.0
Input = 70 MHz, –3 dBFS 70.8
Input = 170 MHz, –3 dBFS 70.0
Input = 240 MHz, –3 dBFS 70.0
Input = 240 MHz, –40 dBFS 71.0
Input = 300 MHz, –3 dBFS 69.4
ENOB Signal-to-noise and distortion ratio, integrated across Nyquist bandwidth Bits
Input = 10 MHz, –3 dBFS 11.5
Input = 70 MHz, –3 dBFS 11.5
Input = 170 MHz, –3 dBFS 11.3
Input = 240 MHz, –3 dBFS 11.3
Input = 300 MHz, –3 dBFS 11.2
NSD Noise spectral density, average NSD across Nyquist bandwidth dBFS/Hz
Input = 10 MHz, –3 dBFS –152.1
Input = 70 MHz, –3 dBFS –151.9
Input = 170 MHz, –3 dBFS –151.5
Input = 240 MHz, –3 dBFS –151.1
Input = 240 MHz, –40 dBFS –152.1
Input = 300 MHz, –3 dBFS –150.7
SFDR Spurious free dynamic range, single tone dBFS
Input = 10 MHz, –3 dBFS 93
Input = 70 MHz, –3 dBFS 92
Input = 170 MHz, –3 dBFS 80
Input = 240 MHz, –3 dBFS 75 87
Input = 300 MHz, –3 dBFS 86
HD2 2nd order harmonic distortion dBFS
Input = 10 MHz, –3 dBFS –95
Input = 70 MHz, –3 dBFS –95
Input = 170 MHz, –3 dBFS –92
Input = 240 MHz, –3 dBFS –75 –90
Input = 300 MHz, –3 dBFS –90
HD3 3rd order harmonic distortion dBFS
Input = 10 MHz, –3 dBFS –95
Input = 70 MHz, –3 dBFS –95
Input = 170 MHz, –3 dBFS –80
Input = 240 MHz, –3 dBFS –75 –87
Input = 300 MHz, –3 dBFS –86
Non HD2, HD3 Largest spurious tone, not including DC, HD2 or HD3 dBFS
Input = 10 MHz, –3 dBFS –95
Input = 70 MHz, –3 dBFS –95
Input = 170 MHz, –3 dBFS –92
Input = 240 MHz, –3 dBFS –80 –92
Input = 300 MHz, –3 dBFS –92
IMD3 Third-order intermodulation, dual tone dBFS
Tone 1 = 235 MHz, –10 dBFS
Tone 2 = 240 MHz, –10 dBFS
–94

Electrical Characteristics: Power Supply

Unless otherwise noted, these specifications apply for VA3.0 = 3 V; VA1.8 = 1.8 V; VA1.2 = 1.2 V; FCLKIN = FS = 250 MSPS. Typical values are at TA = 25°C, unless otherwise noted. Limit values specified for the temperature range TA-MIN = –40°C to TP-MAX = 105°C.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VA3.0 3.0V analog voltage supply 2.85 3.0 3.45 V
VA1.8 1.8V analog voltage supply 1.7 1.8 1.9 V
VA1.2 1.2V analog voltage supply 1.15 1.2 1.25 V
IA3.0 VA3.0 supply current consumption 95 mA
IA1.8 VA1.8 supply current consumption 112 mA
IA1.2 VA1.2 supply current consumption 78 mA
PT Total power consumption of the VA3.0 , VA1.8 , VA1.2 supplies(1)
Normal operation(2) 584 600 mW
Power consumption during power-down state, external clock active 38
Power consumption during sleep state, external clock active 38
VBP2.5 BP2.5 bias voltage Do not load the BP2.5 pin 2.65 V
Supply sensitivity to noise
Power of spectral spur resulting from a 100-mV sinusoidal signal modulating a supply at 500 kHz. Analog input is a –3 dBFS 150-MHz single tone. In all cases, the spur appears as part of a pair symmetric about the fundamental that scales proportionally with the fundamental amplitude.
dBFS
VA3.0 –72.5
VA1.8 –58.0
VA1.2 –37.7
Power values indicate consumption during normal conversion assuming an established JESD204 link.
The power limit applies to an ambient temperature and board thermal pad temperature of 25°C.

Electrical Characteristics: Analog Interface

Unless otherwise noted, these specifications apply for VA3.0 = 3 V; VA1.8 = 1.8 V; VA1.2 = 1.2 V; FCLKIN = FS = 250 MSPS; external differential resistive termination at ADC input is 66 Ω. Typical values are at TA = 25°C. Limit values specified for the temperature range TA-MIN = –40°C to TP-MAX = 105°C.
PARAMETER TEST CONDIONS MIN TYP MAX UNIT
VCM Input common mode voltage reference voltage at the VCM pin
Varies with temperature
1.6 V
IVCM Input common mode voltage reference current sourcing or sinking on VCMA or VCMB pins.(1) 1 mA
VCM-OFF Input common mode voltage offset range
Allowable difference between the common mode applied to the analog input and the bias voltage at the VCM bias pin.
50 mV
RIN Input termination resistance
Differential
200 Ω
CIN Input capacitance, differential 3.7 pF
This parameter is verified by design.

Digital Input Characteristics

Unless otherwise noted, these specifications apply for VA3.0 = 3 V; VA1.8 = 1.8 V; VA1.2 = 1.2 V; FCLKIN = FS = 250 MSPS. Typical values are at TA = 25°C. Limit values specified for the temperature range TA-MIN = –40°C to TP-MAX = 105°C.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
CLKIN+/-
VID-MAX Maximum Input differential voltage(1)(3)
Differential peak voltage
1000 mV
VID-MIN Minimum Input differential voltage(1)
Differential peak voltage
250 mV
dVSS/dt Recommended minimum edge slew rate at the zero crossing(1)
1 V/ns
VIS-BIAS Input offset voltage internal bias (1)
Internally biased
0.5 V
VIS-IN Externally applied input offset voltage(3)(4)
Allowable common mode voltage range for DC coupled interfaces
0.5 ± 0.1 V
Zrdiff Differential termination resistance at DC(2) 100 Ω
Ztt Common-mode bias source impedance(2)(4) 11
CT Differential termination capacitance(4) 1.5 pF
SYSREF+/-
VID-MAX Maximum Input differential voltage(1)(3)
Differential peak voltage
1000 mV
VID-MIN Minimum Input differential voltage(1)
Differential peak voltage
250 mV
VIS-BIAS Input offset voltage bias (1)
Internally biased
0.5 V
VIS-IN Externally applied input offset voltage(3)(4)
Allowable common mode voltage range for DC coupled interfaces
0.5 ± 0.1 V
Zrdiff Differential termination resistance at DC(2) 2.2
Ztt Common-mode bias source impedance(2)(4) 11
CT Differential termination capacitance(2)(4) 0.8 pF
SYNCb+/-
VID Input differential voltage (1)(3)
Differential peak voltage
350 mV
VIS-IN Externally applied input offset voltage(1)(3) 1.25 ± 0.75 V
Zrdiff Differential termination resistance(2) 110 Ω
CT Differential termination capacitance(2)(4) 1.0 pF
Specification applies to the electrical level diagram of Figure 1
Specification applies to the electrical circuit diagram of Figure 2
The voltage present at the pins should not exceed Absolute Maximum limits
This parameter is verified by design.

Electrical Characteristics: Serial Data Output Interface

Unless otherwise noted, these specifications apply for VA3.0 = 3 V; VA1.8 = 1.8 V; VA1.2 = 1.2 V; FCLKIN = FS = 250 MSPS. Typical values are at TA = 25°C.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SERIAL LANE OUTPUT CHARACTERISTICS (SO)
VOD Output differential voltage(1)
Differential peak-peak values. Assumes ideal 100-Ω load. De-emphasis disabled.
Configurable via SPI.
570
660
750
840
930
1030
1130
1200
mV
ISC Short circuit current. SO+ terminal shorted to GND during logic high output signal state.
VOD and Rdeemp configured to default values.
19 mA
Zddiff Differential output impedance at DC.(2)
VOD configured to default value.
100 Ω
RLddiff Differential output return loss magnitude
Relative to 100 Ω; For frequencies between 100 MHz and 0.75*Baud_Rate (5.5 GHz max); VOD and Rdeemp configured to default values.
–11 dB
Rdeemp Transmitter de-emphasis values
VOD configured to 4.
Configurable via SPI.
0
1.4
3.4
4.9
5.9
7.4
8.9
12.1
dB
Specification applies to the electrical level diagram of Figure 3
Specification applies to the electrical circuit diagram of Figure 4

Electrical Characteristics: Digital Input

Unless otherwise noted, these specifications apply for VA3.0= 3 V; VA1.8 = 1.8 V; VA1.2 = 1.2 V; FCLKIN = FS = 250 MSPS. Typical values are at TA = 25°C. Limit values specified for the temperature range TA-MIN = –40°C to TP-MAX = 105°C.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
DIGITAL INPUT CHARACTERISTICS (SDI, SCLK, CSB)
VIH Logical 1 input voltage(1)
Inputs are compatible with 1.2-V up to 3-V logic.
0.9 V
VIL Logical 0 input voltage(1) 0.3 V
IIN0 Logic low input current 0.04 uA
IIN1 Logic high input current 0.04 uA
CIN Input capacitance(3) 2 pF
DIGITAL OUTPUT CHARACTERISTICS (SDO)
VOH Logical 1 output voltage(1)(2)
VSPI = 1.2, 1.8, 2.5, or 3 V ; Configurable via SPI.
Default VSPI = 3 V, IOH = 400 µA
VSPI – 0.3 VSPI(2) V
VOL Logical 0 output voltage(1)(2)
IOL = –400 µA.
0 0.3 V
+ISC Logic high short circuit current. Applies to VSPI = 1.8 V 18 mA
–ISC Logic low short circuit current. Applies to VSPI = 1.8 V 14 mA
Specification applies to the electrical level diagram of Figure 5.
The SPI_CFG register must be changed to a supported output logic level after power up and before a read command is executed. Until that time, the output voltage on SDO may be as high as the VA3.0 supply during a read command. The SDO output is high-Z at all times except during a read command.
This parameter is verified by design.

Timing Requirements

Unless otherwise noted, these specifications apply for VA3.0= 3 V; VA1.8 = 1.8 V; VA1.2 = 1.2 V; FCLKIN = FS = 250 MSPS. VSPI = 1.8 V(1). Typical values are at TA = 25°C. Limit values specified for the temperature range TA-MIN = –40°C to TP-MAX = 105°C.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ADC SAMPLING INSTANT TIMING CHARACTERISTICS
FS Sampling Rate
Equal to FCLKIN / CLKDIV
50 250 MSPS
FCLKIN Input Clock Frequency at CLKIN Inputs MHz
CLKDIV = 1 50 250
CLKDIV = 2 100 500
CLKDIV = 4 200 1000
CLKDIV = 8 400 2000
DC Input clock (CLKIN) duty cycle CLKDIV = 1 30 50 70 %
CLKDIV = 2, 4, 8(2) 45 50 55
tLAT-ADC ADC core latency
Delay from a reference sampling instant to the boundary of the internal LMFC where the reference sample is the first sample of the next transmitted multi-frame. In this device, the frame clock period is equal to the sampling clock period.
8.5 Frame clock cycles
tJ Additive sampling aperture jitter
Depends on input CLKIN differential edge rate at the zero crossing, dVSS/dt. Tested with 5 V/ns edge rate.
fs
CLKDIV = 1 105
CLKDIV = 2, 4, 8 140
SYSREF TIMING CHARACTERISTICS
tPH-SYS SYSREF assertion duration
Required duration of SYSREF assertion after rising edge event
2 Frame clock cycles
tPL-SYS SYSREF de-assertion duration
Required duration of SYSREF de-assertion after falling edge event
2 Frame clock cycles
tS-SYS SYSREF setup time
Relative to CLKIN rising edge
430 ps
tH-SYS SYSREF hold time
Relative to CLKIN rising edge
–100 ps
JESD204B INTERFACE LINK TIMING CHARACTERISTICS
tD-LMFC SYSREF to LMFC delay
Functional delay between SYSREF assertion latched and LMFC frame boundary. Depends on CLKDIV setting. Multiply the delay value by the CLKDIV factor to convert to units of CLKIN clock cycles.
Frame clock cycles
CLKDIV = 1 3.5
CLKDIV = 2 4
CLKDIV = 4 3.75
CLKDIV = 8 3.625
tD-K28 LMFC to K28.5 delay
Functional delay between the start of the first K28.5 frame during Code Group Synchronization at the serial output and the preceding LMFC frame boundary.
7 7.4 9 Frame clock cycles
tD-ILA LMFC to ILA delay
Functional delay between the start of the first ILA frame during Initial Lane Synchronization at the serial output and the preceding LMFC frame boundary
7 7.4 9
tD-DATA LMFC to valid data delay
Functional delay between the start of the first valid data frame at the serial output and the preceding LMFC frame boundary.
7 7.4 9
tH-SYNCb SYNCb assertion hold time
Required SYNCb hold time after assertion before de-assertion to initiate a link re-synchronization.
4 Frame clock cycles
tILA ILA duration
Duration of the ILA sequence .
4 Multi-frame clock cycles
SERIAL OUTPUT DATA TIMING CHARACTERISTICS
FSR Serial bit rate 1.0 5.0 Gb/s
UI Unit Interval
5.0 Gb/s Data Rate
200 ps
tR, tF Edge transition rise and fall times 40 ps
DJ Deterministic jitter
Includes periodic jitter (PJ), data dependent jitter (DDJ), duty cycle distortion (DCD), and inter-symbol interference (ISI); 5.0 Gb/s data rate.
0.032 p-p UI
6.33 p-p ps
RJ Random jitter
Assumes BER of 1e-15 (Q = 15.88); 5.0 Gb/s data rate
0.118 p-p UI
1.48 rms ps
TJ Total jitter
Sum of DJ and RJ. Assumes BER of 1e-15 (measured Q = 15.6); 5.0 Gb/s data rate.
0.148 p-p UI
29.56 p-p ps
SPI BUS TIMING CHARACTERISTICS(1)
fSCLK Serial clock frequency
fSCLK = 1 / tP
20 MHz
tPH SCLK pulse width – high 10 ns
tPL SCLK pulse width – low 10 ns
tSSU SDI input data setup time 5 ns
tSH SDI input data hold time 5 ns
tODZ SDO output data driven-to-3-state time 15 ns
tOZD SDO output data 3-state-to-driven time 15 ns
tOD SDO output data delay time 20 ns
tCSS CSB setup time 5 ns
tCSH CSB hold time 5 ns
tIAG Inter-access gap
Minimum time CSB must be de-asserted between accesses
5 ns
All timing specifications for the SPI given for VSPI = 1.8-V logic levels and a 5-pF capacitive load on the SDO output. Timing specification may require larger margins for VSPI= 1.2 V.
This parameter is verified by design.
ADC14X250 Diff_Input_Electrical.gif Figure 1. Electrical Level Diagram for Differential Input Signals
ADC14X250 Diff_Input_Circuit.gif Figure 2. Simplified Electrical Circuit Diagram for Differential Input Signals
ADC14X250 Diff_Output_Electrical.gif Figure 3. Electrical Level Diagram for Differential Output Signals
ADC14X250 Diff_Output_Circuit.gif Figure 4. Electrical Circuit Diagram for Differential Output Signals
ADC14X250 CMOS_Logic_Electrical.gif Figure 5. Electrical Level Diagram for Single-ended Digital Inputs and Outputs
ADC14X250 ADC14X250_Sampling_Timing_Diagram.gif Figure 6. Sample to Data Timing Diagram
ADC14X250 SPI_Timing_Diagram.gif Figure 7. SPI Timing Diagram
ADC14X250 JESD204_Synchronization_Timing.gif Figure 8. JESD204B Interface Link Initialization Timing Diagram

For more information, see the Functional Block Diagram.

Typical Characteristics

Unless otherwise noted, these specifications apply for VA3.0 = 3.0 V; VA1.8 = 1.8 V; VA1.2 = 1.2 V; FCLKIN = FS = 250 MSPS; 240-MHz input frequency; –3-dBFS input power. External termination at ADC input is 66 Ω differential. CLKIN± input is a 2 Vp-p differential sinusoid. Typical values are at TA = 25°C.
ADC14X250 D015_SLASE49.gif
Input Frequency = 10 MHz
Figure 9. Differential Non-Linearity (DNL)
ADC14X250 D018_SLASE49.gif
Input Frequency = 10 MHz
Figure 11. DNL vs VA1.2 Supply
ADC14X250 D001_SLASE49.gif
Figure 13. SNR, SINAD, SFDR vs Input Frequency
ADC14X250 D003_SLASE49.gif
Input Frequency = 10 MHz
Figure 15. SNR, SINAD, SFDR vs Sampling Rate
ADC14X250 D041_SLASE49.gif
Nominal Supplies: VA3.0 = 3.0 V VA1.2 = 1.2 V
Figure 17. SNR, SINAD, SFDR vs VA1.8 Supply
ADC14X250 D005_SLASE49.gif
Figure 19. SNR, SINAD, SFDR vs Temperature
ADC14X250 D008_SLASE49.gif
Figure 21. HD2, HD3, Non-HD2/HD3, THD vs Input Power
ADC14X250 D011_SLASE49.gif
Figure 23. HD2, HD3, Non-HD2/HD3, THD vs Temperature
ADC14X250 D020_SLASE49.gif
SNR = 70.9 dBFS Capture Depth = 65536 Samples
SFDR = 92 dBFS
Figure 25. 1-Tone Spectrum (70 MHz)
ADC14X250 D023_SLASE49.gif
Input Amplitude = IMD3 = –94 dBFS Capture Depth =
–9 dBFS/tone 65536 Samples
Figure 27. 2-Tone Spectrum (235/240 MHz)
ADC14X250 D026_SLASE49.gif
Figure 29. Power vs Sampling Rate
ADC14X250 ADC14X250 5Gbps 20in FR4 Eye.gif
Figure 31. Transmitted Eye at Output of 20-inch, 5-mil. FR4 Microstrip at 5.0 Gb/s With Optimized De-Emphasis and Voltage Swing
ADC14X250 D016_SLASE49.gif
Input Frequency = 10 MHz
Figure 10. Integral Non-Linearity (INL)
ADC14X250 D017_SLASE49.gif
Input Frequency = 10 MHz
Figure 12. INL vs VA1.2 Supply
ADC14X250 D002_SLASE49.gif
Figure 14. SNR, SINAD, SFDR vs Input Power
ADC14X250 D004_SLASE49.gif
Nominal Supplies: VA1.8 = 1.8 V VA1.2 = 1.2 V
Figure 16. SNR, SINAD, SFDR vs VA3.0 Supply
ADC14X250 D042_SLASE49.gif
Nominal Supplies: VA3.0 = 3.0 V VA1.8 = 1.8 V
Figure 18. SNR, SINAD, SFDR vs VA1.2 Supply
ADC14X250 D007_SLASE49.gif
Figure 20. HD2, HD3, Non-HD2/HD3, THD vs Input Frequency
ADC14X250 D009_SLASE49.gif
Input Frequency = 10 MHz
Figure 22. HD2, HD3, Non-HD2/HD3, THD vs Sampling Rate
ADC14X250 D022_SLASE49.gif
SNR = 71.0 dBFS Capture Depth = 65536 Samples
SFDR = 92 dBFS
Figure 24. 1-Tone Spectrum (10 MHz)
ADC14X250 D021_SLASE49.gif
SNR = 70.1 dBFS Capture Depth = 65536 Samples
SFDR = 86 dBFS
Figure 26. 1-Tone Spectrum (240 MHz)
ADC14X250 D025_SLASE49.gif
Figure 28. Power vs Temperature
ADC14X250 ADC14X250 5Gbps Eye.gif
Figure 30. Output Serial Lane Eye Diagram at 5.0 Gb/s