SLASE49B December 2015 – April 2017 ADC14X250
PRODUCTION DATA.
MIN | MAX | UNIT | ||
---|---|---|---|---|
Supply Voltage | VA3.0 | –0.3 | 4.2 | V |
VA1.8 | –0.3 | 2.35 | V | |
VA1.2 | –0.3 | 1.55 | V | |
Voltage at: | VIN+, VIN– | VCM – 0.75(4) | VCM + 0.75 | V |
VCM | –0.3 | VA3.0 + 0.3, not to exceed 4.2 V | V | |
SCLK, SDI, CSb | –0.3 | VA3.0 + 0.3, not to exceed 4.2 V | V | |
SDO | –0.3 | VSPI + 0.3, not to exceed 4.2 V | V | |
CLKIN+, CLKIN–, SYSREF+, SYSREF– | –0.3 | 1.55 | V | |
SYNC+, SYNC– | –0.3 | VBP2.5 + 0.3 | V | |
BP2.5 | –0.3 | 3.2 | V | |
SO+, SO– | –0.3 | VBP2.5 + 0.3 | V | |
Input current at any pin(3) | 5 | mA | ||
TJ | Operating junction temperature(2) | 125 | °C | |
Tstg | Storage temperature range | –65 | 150 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±2500 | V |
Charged device model (CDM), per JEDEC specification JESD22-C101(2) | ±1000 |
MIN | MAX | UNIT | ||
---|---|---|---|---|
TA-MIN | Specified temperature minimum, ambient air. | –40 | °C | |
TA-MAX | Specified temperature maximum, ambient air.(1) | 85 | °C | |
TP-MAX | Specified temperature maximum, measured at the device's footprint thermal pad on the printed circuit board. | 105 | °C | |
TJ | Operating junction temperature(2) | 106 | °C |
THERMAL METRIC(1) | RHB (WQFN) | UNIT | |
---|---|---|---|
(32 PINS) | |||
RθJA | Thermal resistance, junction to ambient | 31.4 | °C/W |
RθJC(top) | Thermal resistance, junction to package top | 50.2 | |
RθJC(bottom) | Thermal resistance, junction to package bottom | 1.1 | |
RθJB | Thermal resistance, junction to board | 5.1 | |
φJT | Characterization parameter, junction to package top | 0.2 | |
φJB | Characterization parameter, junction to board | 5.1 |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
RESOLUTION | Bit resolution of ADC core | 14 | Bits | |||
FSR | Full scale range Differential peak-to-peak |
1.7 | Vpp | |||
GVAR | Gain variation 1-sigma variation of full scale range across multiple units |
±0.05 | dB | |||
VOFF | Input referred voltage offset | ±3 | mV | |||
DNL | Differential non-linearity | +0.27 –0.18 |
LSB | |||
INL | Integral non-linearity | +1 –0.9 |
LSB |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
BW3dB | 3-dB bandwidth Frequency at which the voltage input to digital output response deviates by 3 dB compared to low frequencies for a low impedance differential signal applied at the input pins. Includes 0.5-nH parasitic inductance in series with each pin of the differential analog input. |
800 | MHz | |||
SNR | Signal-to-noise ratio, integrated across entire Nyquist bandwidth | dBFS | ||||
Input = 10 MHz, –3 dBFS | 71.1 | |||||
Input = 70 MHz, –3 dBFS | 70.9 | |||||
Input = 170 MHz, –3 dBFS | 70.5 | |||||
Input = 240 MHz, –3 dBFS | 68.3 | 70.1 | ||||
Input = 240 MHz, –40 dBFS | 71.1 | |||||
Input = 300 MHz, –3 dBFS | 69.7 | |||||
SINAD | Signal-to-noise and distortion ratio, integrated across Nyquist bandwidth | dBFS | ||||
Input = 10 MHz, –3 dBFS | 71.0 | |||||
Input = 70 MHz, –3 dBFS | 70.8 | |||||
Input = 170 MHz, –3 dBFS | 70.0 | |||||
Input = 240 MHz, –3 dBFS | 70.0 | |||||
Input = 240 MHz, –40 dBFS | 71.0 | |||||
Input = 300 MHz, –3 dBFS | 69.4 | |||||
ENOB | Signal-to-noise and distortion ratio, integrated across Nyquist bandwidth | Bits | ||||
Input = 10 MHz, –3 dBFS | 11.5 | |||||
Input = 70 MHz, –3 dBFS | 11.5 | |||||
Input = 170 MHz, –3 dBFS | 11.3 | |||||
Input = 240 MHz, –3 dBFS | 11.3 | |||||
Input = 300 MHz, –3 dBFS | 11.2 | |||||
NSD | Noise spectral density, average NSD across Nyquist bandwidth | dBFS/Hz | ||||
Input = 10 MHz, –3 dBFS | –152.1 | |||||
Input = 70 MHz, –3 dBFS | –151.9 | |||||
Input = 170 MHz, –3 dBFS | –151.5 | |||||
Input = 240 MHz, –3 dBFS | –151.1 | |||||
Input = 240 MHz, –40 dBFS | –152.1 | |||||
Input = 300 MHz, –3 dBFS | –150.7 | |||||
SFDR | Spurious free dynamic range, single tone | dBFS | ||||
Input = 10 MHz, –3 dBFS | 93 | |||||
Input = 70 MHz, –3 dBFS | 92 | |||||
Input = 170 MHz, –3 dBFS | 80 | |||||
Input = 240 MHz, –3 dBFS | 75 | 87 | ||||
Input = 300 MHz, –3 dBFS | 86 | |||||
HD2 | 2nd order harmonic distortion | dBFS | ||||
Input = 10 MHz, –3 dBFS | –95 | |||||
Input = 70 MHz, –3 dBFS | –95 | |||||
Input = 170 MHz, –3 dBFS | –92 | |||||
Input = 240 MHz, –3 dBFS | –75 | –90 | ||||
Input = 300 MHz, –3 dBFS | –90 | |||||
HD3 | 3rd order harmonic distortion | dBFS | ||||
Input = 10 MHz, –3 dBFS | –95 | |||||
Input = 70 MHz, –3 dBFS | –95 | |||||
Input = 170 MHz, –3 dBFS | –80 | |||||
Input = 240 MHz, –3 dBFS | –75 | –87 | ||||
Input = 300 MHz, –3 dBFS | –86 | |||||
Non HD2, HD3 | Largest spurious tone, not including DC, HD2 or HD3 | dBFS | ||||
Input = 10 MHz, –3 dBFS | –95 | |||||
Input = 70 MHz, –3 dBFS | –95 | |||||
Input = 170 MHz, –3 dBFS | –92 | |||||
Input = 240 MHz, –3 dBFS | –80 | –92 | ||||
Input = 300 MHz, –3 dBFS | –92 | |||||
IMD3 | Third-order intermodulation, dual tone | dBFS | ||||
Tone 1 = 235 MHz, –10 dBFS Tone 2 = 240 MHz, –10 dBFS |
–94 |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
VA3.0 | 3.0V analog voltage supply | 2.85 | 3.0 | 3.45 | V | ||
VA1.8 | 1.8V analog voltage supply | 1.7 | 1.8 | 1.9 | V | ||
VA1.2 | 1.2V analog voltage supply | 1.15 | 1.2 | 1.25 | V | ||
IA3.0 | VA3.0 supply current consumption | 95 | mA | ||||
IA1.8 | VA1.8 supply current consumption | 112 | mA | ||||
IA1.2 | VA1.2 supply current consumption | 78 | mA | ||||
PT | Total power consumption of the VA3.0 , VA1.8 , VA1.2 supplies(1)
|
Normal operation(2) | 584 | 600 | mW | ||
Power consumption during power-down state, external clock active | 38 | ||||||
Power consumption during sleep state, external clock active | 38 | ||||||
VBP2.5 | BP2.5 bias voltage | Do not load the BP2.5 pin | 2.65 | V | |||
Supply sensitivity to noise Power of spectral spur resulting from a 100-mV sinusoidal signal modulating a supply at 500 kHz. Analog input is a –3 dBFS 150-MHz single tone. In all cases, the spur appears as part of a pair symmetric about the fundamental that scales proportionally with the fundamental amplitude. |
dBFS | ||||||
VA3.0 | –72.5 | ||||||
VA1.8 | –58.0 | ||||||
VA1.2 | –37.7 |
PARAMETER | TEST CONDIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
VCM | Input common mode voltage reference voltage at the VCM pin Varies with temperature |
1.6 | V | ||||
IVCM | Input common mode voltage reference current sourcing or sinking on VCMA or VCMB pins.(1) | 1 | mA | ||||
VCM-OFF | Input common mode voltage offset range Allowable difference between the common mode applied to the analog input and the bias voltage at the VCM bias pin. |
50 | mV | ||||
RIN | Input termination resistance Differential |
200 | Ω | ||||
CIN | Input capacitance, differential | 3.7 | pF |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
CLKIN+/- | ||||||
VID-MAX | Maximum Input differential voltage(1)(3)
Differential peak voltage |
1000 | mV | |||
VID-MIN | Minimum Input differential voltage(1)
Differential peak voltage |
250 | mV | |||
dVSS/dt | Recommended minimum edge slew rate at the zero crossing(1)
|
1 | V/ns | |||
VIS-BIAS | Input offset voltage internal bias (1)
Internally biased |
0.5 | V | |||
VIS-IN | Externally applied input offset voltage(3)(4)
Allowable common mode voltage range for DC coupled interfaces |
0.5 ± 0.1 | V | |||
Zrdiff | Differential termination resistance at DC(2) | 100 | Ω | |||
Ztt | Common-mode bias source impedance(2)(4) | 11 | kΩ | |||
CT | Differential termination capacitance(4) | 1.5 | pF | |||
SYSREF+/- | ||||||
VID-MAX | Maximum Input differential voltage(1)(3)
Differential peak voltage |
1000 | mV | |||
VID-MIN | Minimum Input differential voltage(1)
Differential peak voltage |
250 | mV | |||
VIS-BIAS | Input offset voltage bias (1)
Internally biased |
0.5 | V | |||
VIS-IN | Externally applied input offset voltage(3)(4)
Allowable common mode voltage range for DC coupled interfaces |
0.5 ± 0.1 | V | |||
Zrdiff | Differential termination resistance at DC(2) | 2.2 | kΩ | |||
Ztt | Common-mode bias source impedance(2)(4) | 11 | kΩ | |||
CT | Differential termination capacitance(2)(4) | 0.8 | pF | |||
SYNCb+/- | ||||||
VID | Input differential voltage (1)(3)
Differential peak voltage |
350 | mV | |||
VIS-IN | Externally applied input offset voltage(1)(3) | 1.25 ± 0.75 | V | |||
Zrdiff | Differential termination resistance(2) | 110 | Ω | |||
CT | Differential termination capacitance(2)(4) | 1.0 | pF |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
SERIAL LANE OUTPUT CHARACTERISTICS (SO) | ||||||
VOD | Output differential voltage(1)
Differential peak-peak values. Assumes ideal 100-Ω load. De-emphasis disabled. Configurable via SPI. |
570 660 750 840 930 1030 1130 1200 |
mV | |||
ISC | Short circuit current. SO+ terminal shorted to GND during logic high output signal state. VOD and Rdeemp configured to default values. |
19 | mA | |||
Zddiff | Differential output impedance at DC.(2)
VOD configured to default value. |
100 | Ω | |||
RLddiff | Differential output return loss magnitude Relative to 100 Ω; For frequencies between 100 MHz and 0.75*Baud_Rate (5.5 GHz max); VOD and Rdeemp configured to default values. |
–11 | dB | |||
Rdeemp | Transmitter de-emphasis values VOD configured to 4. Configurable via SPI. |
0 1.4 3.4 4.9 5.9 7.4 8.9 12.1 |
dB |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
DIGITAL INPUT CHARACTERISTICS (SDI, SCLK, CSB) | ||||||
VIH | Logical 1 input voltage(1)
Inputs are compatible with 1.2-V up to 3-V logic. |
0.9 | V | |||
VIL | Logical 0 input voltage(1) | 0.3 | V | |||
IIN0 | Logic low input current | 0.04 | uA | |||
IIN1 | Logic high input current | 0.04 | uA | |||
CIN | Input capacitance(3) | 2 | pF | |||
DIGITAL OUTPUT CHARACTERISTICS (SDO) | ||||||
VOH | Logical 1 output voltage(1)(2)
VSPI = 1.2, 1.8, 2.5, or 3 V ; Configurable via SPI. Default VSPI = 3 V, IOH = 400 µA |
VSPI – 0.3 | VSPI(2) | V | ||
VOL | Logical 0 output voltage(1)(2)
IOL = –400 µA. |
0 | 0.3 | V | ||
+ISC | Logic high short circuit current. Applies to VSPI = 1.8 V | 18 | mA | |||
–ISC | Logic low short circuit current. Applies to VSPI = 1.8 V | 14 | mA |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
ADC SAMPLING INSTANT TIMING CHARACTERISTICS | ||||||
FS | Sampling Rate Equal to FCLKIN / CLKDIV |
50 | 250 | MSPS | ||
FCLKIN | Input Clock Frequency at CLKIN Inputs | MHz | ||||
CLKDIV = 1 | 50 | 250 | ||||
CLKDIV = 2 | 100 | 500 | ||||
CLKDIV = 4 | 200 | 1000 | ||||
CLKDIV = 8 | 400 | 2000 | ||||
DC | Input clock (CLKIN) duty cycle | CLKDIV = 1 | 30 | 50 | 70 | % |
CLKDIV = 2, 4, 8(2) | 45 | 50 | 55 | |||
tLAT-ADC | ADC core latency Delay from a reference sampling instant to the boundary of the internal LMFC where the reference sample is the first sample of the next transmitted multi-frame. In this device, the frame clock period is equal to the sampling clock period. |
8.5 | Frame clock cycles | |||
tJ | Additive sampling aperture jitter Depends on input CLKIN differential edge rate at the zero crossing, dVSS/dt. Tested with 5 V/ns edge rate. |
fs | ||||
CLKDIV = 1 | 105 | |||||
CLKDIV = 2, 4, 8 | 140 | |||||
SYSREF TIMING CHARACTERISTICS | ||||||
tPH-SYS | SYSREF assertion duration Required duration of SYSREF assertion after rising edge event |
2 | Frame clock cycles | |||
tPL-SYS | SYSREF de-assertion duration Required duration of SYSREF de-assertion after falling edge event |
2 | Frame clock cycles | |||
tS-SYS | SYSREF setup time Relative to CLKIN rising edge |
430 | ps | |||
tH-SYS | SYSREF hold time Relative to CLKIN rising edge |
–100 | ps | |||
JESD204B INTERFACE LINK TIMING CHARACTERISTICS | ||||||
tD-LMFC | SYSREF to LMFC delay Functional delay between SYSREF assertion latched and LMFC frame boundary. Depends on CLKDIV setting. Multiply the delay value by the CLKDIV factor to convert to units of CLKIN clock cycles. |
Frame clock cycles | ||||
CLKDIV = 1 | 3.5 | |||||
CLKDIV = 2 | 4 | |||||
CLKDIV = 4 | 3.75 | |||||
CLKDIV = 8 | 3.625 | |||||
tD-K28 | LMFC to K28.5 delay Functional delay between the start of the first K28.5 frame during Code Group Synchronization at the serial output and the preceding LMFC frame boundary. |
7 | 7.4 | 9 | Frame clock cycles | |
tD-ILA | LMFC to ILA delay Functional delay between the start of the first ILA frame during Initial Lane Synchronization at the serial output and the preceding LMFC frame boundary |
7 | 7.4 | 9 | ||
tD-DATA | LMFC to valid data delay Functional delay between the start of the first valid data frame at the serial output and the preceding LMFC frame boundary. |
7 | 7.4 | 9 | ||
tH-SYNCb | SYNCb assertion hold time Required SYNCb hold time after assertion before de-assertion to initiate a link re-synchronization. |
4 | Frame clock cycles | |||
tILA | ILA duration Duration of the ILA sequence . |
4 | Multi-frame clock cycles | |||
SERIAL OUTPUT DATA TIMING CHARACTERISTICS | ||||||
FSR | Serial bit rate | 1.0 | 5.0 | Gb/s | ||
UI | Unit Interval 5.0 Gb/s Data Rate |
200 | ps | |||
tR, tF | Edge transition rise and fall times | 40 | ps | |||
DJ | Deterministic jitter Includes periodic jitter (PJ), data dependent jitter (DDJ), duty cycle distortion (DCD), and inter-symbol interference (ISI); 5.0 Gb/s data rate. |
0.032 | p-p UI | |||
6.33 | p-p ps | |||||
RJ | Random jitter Assumes BER of 1e-15 (Q = 15.88); 5.0 Gb/s data rate |
0.118 | p-p UI | |||
1.48 | rms ps | |||||
TJ | Total jitter Sum of DJ and RJ. Assumes BER of 1e-15 (measured Q = 15.6); 5.0 Gb/s data rate. |
0.148 | p-p UI | |||
29.56 | p-p ps | |||||
SPI BUS TIMING CHARACTERISTICS(1) | ||||||
fSCLK | Serial clock frequency fSCLK = 1 / tP |
20 | MHz | |||
tPH | SCLK pulse width – high | 10 | ns | |||
tPL | SCLK pulse width – low | 10 | ns | |||
tSSU | SDI input data setup time | 5 | ns | |||
tSH | SDI input data hold time | 5 | ns | |||
tODZ | SDO output data driven-to-3-state time | 15 | ns | |||
tOZD | SDO output data 3-state-to-driven time | 15 | ns | |||
tOD | SDO output data delay time | 20 | ns | |||
tCSS | CSB setup time | 5 | ns | |||
tCSH | CSB hold time | 5 | ns | |||
tIAG | Inter-access gap Minimum time CSB must be de-asserted between accesses |
5 | ns |
For more information, see the Functional Block Diagram.
Input Frequency | = 10 MHz | |
Input Frequency | = 10 MHz | |
Input Frequency | = 10 MHz |
Nominal Supplies: | VA3.0 = 3.0 V | VA1.2 = 1.2 V |
SNR = 70.9 dBFS | Capture Depth = | 65536 Samples |
SFDR = 92 dBFS |
Input Amplitude = | IMD3 = –94 dBFS | Capture Depth = |
–9 dBFS/tone | 65536 Samples |
Input Frequency | = 10 MHz | |
Input Frequency | = 10 MHz | |
Nominal Supplies: | VA1.8 = 1.8 V | VA1.2 = 1.2 V |
Nominal Supplies: | VA3.0 = 3.0 V | VA1.8 = 1.8 V |
Input Frequency | = 10 MHz |
SNR = 71.0 dBFS | Capture Depth = | 65536 Samples |
SFDR = 92 dBFS |
SNR = 70.1 dBFS | Capture Depth = | 65536 Samples |
SFDR = 86 dBFS |