SBAS501C May   2013  – August 2016 ADS1220

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 SPI Timing Requirements
    7. 6.7 SPI Switching Characteristics
    8. 6.8 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1 Noise Performance
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Multiplexer
      2. 8.3.2  Low-Noise PGA
        1. 8.3.2.1 PGA Common-Mode Voltage Requirements
        2. 8.3.2.2 Bypassing the PGA
      3. 8.3.3  Modulator
      4. 8.3.4  Digital Filter
      5. 8.3.5  Output Data Rate
      6. 8.3.6  Voltage Reference
      7. 8.3.7  Clock Source
      8. 8.3.8  Excitation Current Sources
      9. 8.3.9  Low-Side Power Switch
      10. 8.3.10 Sensor Detection
      11. 8.3.11 System Monitor
      12. 8.3.12 Offset Calibration
      13. 8.3.13 Temperature Sensor
        1. 8.3.13.1 Converting from Temperature to Digital Codes
          1. 8.3.13.1.1 For Positive Temperatures (for Example, 50°C):
          2. 8.3.13.1.2 For Negative Temperatures (for Example, -25°C):
        2. 8.3.13.2 Converting from Digital Codes to Temperature
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power-Up and Reset
      2. 8.4.2 Conversion Modes
        1. 8.4.2.1 Single-Shot Mode
        2. 8.4.2.2 Continuous Conversion Mode
      3. 8.4.3 Operating Modes
        1. 8.4.3.1 Normal Mode
        2. 8.4.3.2 Duty-Cycle Mode
        3. 8.4.3.3 Turbo Mode
        4. 8.4.3.4 Power-Down Mode
    5. 8.5 Programming
      1. 8.5.1 Serial Interface
        1. 8.5.1.1 Chip Select (CS)
        2. 8.5.1.2 Serial Clock (SCLK)
        3. 8.5.1.3 Data Ready (DRDY)
        4. 8.5.1.4 Data Input (DIN)
        5. 8.5.1.5 Data Output and Data Ready (DOUT/DRDY)
        6. 8.5.1.6 SPI Timeout
      2. 8.5.2 Data Format
      3. 8.5.3 Commands
        1. 8.5.3.1 RESET (0000 011x)
        2. 8.5.3.2 START/SYNC (0000 100x)
        3. 8.5.3.3 POWERDOWN (0000 001x)
        4. 8.5.3.4 RDATA (0001 xxxx)
        5. 8.5.3.5 RREG (0010 rrnn)
        6. 8.5.3.6 WREG (0100 rrnn)
      4. 8.5.4 Reading Data
      5. 8.5.5 Sending Commands
      6. 8.5.6 Interfacing with Multiple Devices
    6. 8.6 Register Map
      1. 8.6.1 Configuration Registers
        1. 8.6.1.1 Configuration Register 0 (offset = 00h) [reset = 00h]
        2. 8.6.1.2 Configuration Register 1 (offset = 01h) [reset = 00h]
        3. 8.6.1.3 Configuration Register 2 (offset = 02h) [reset = 00h]
        4. 8.6.1.4 Configuration Register 3 (offset = 03h) [reset = 00h]
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Serial Interface Connections
      2. 9.1.2 Analog Input Filtering
      3. 9.1.3 External Reference and Ratiometric Measurements
      4. 9.1.4 Establishing a Proper Common-Mode Input Voltage
      5. 9.1.5 Unused Inputs and Outputs
      6. 9.1.6 Pseudo Code Example
    2. 9.2 Typical Applications
      1. 9.2.1 K-Type Thermocouple Measurement (-200°C to +1250°C)
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curves
      2. 9.2.2 3-Wire RTD Measurement (-200°C to +850°C)
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
          1. 9.2.2.2.1 Design Variations for 2-Wire and 4-Wire RTD Measurements
        3. 9.2.2.3 Application Curves
      3. 9.2.3 Resistive Bridge Measurement
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Detailed Design Procedure
  10. 10Power Supply Recommendations
    1. 10.1 Power-Supply Sequencing
    2. 10.2 Power-Supply Ramp Rate
    3. 10.3 Power-Supply Decoupling
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

6 Specifications

6.1 Absolute Maximum Ratings(1)

MIN MAX UNIT
Power-supply voltage AVDD to AVSS –0.3 7 V
DVDD to DGND –0.3 7 V
AVSS to DGND –2.8 0.3 V
Analog input voltage AIN0/REFP1, AIN1, AIN2, AIN3/REFN1, REFP0, REFN0 AVSS – 0.3 AVDD + 0.3 V
Digital input voltage CS, SCLK, DIN, DOUT/DRDY, DRDY, CLK DGND – 0.3 DVDD + 0.3 V
Input current Continuous, any pin except power supply pins –10 10 mA
Temperature Junction, TJ –40 150 °C
Storage, Tstg –60 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating ambient temperature range (unless otherwise noted)
MIN NOM MAX UNIT
POWER SUPPLY
Unipolar analog power supply AVDD to AVSS 2.3 5.5 V
AVSS to DGND –0.1 0 0.1
Bipolar analog power supply AVDD to DGND 2.3 2.5 2.75 V
AVSS to DGND –2.75 –2.5 –2.3
Digital power supply DVDD to DGND 2.3 5.5 V
ANALOG INPUTS(1)
VIN Differential input voltage VIN = V(AINP) – V(AINN)(2) –Vref / Gain Vref / Gain V
V(AINx) Absolute input voltage PGA disabled, gain = 1 to 4 AVSS – 0.1 AVDD + 0.1 V
PGA enabled, gain = 1 to 128 See the Low-Noise PGA section
VCM Common-mode input voltage PGA disabled, gain = 1 to 4 AVSS – 0.1 AVDD + 0.1 V
PGA enabled, gain = 1 to 128 See the Low-Noise PGA section
VOLTAGE REFERENCE INPUTS(3)
Vref Differential reference input voltage Vref = V(REFPx) – V(REFNx) 0.75 2.5 AVDD V
V(REFNx) Absolute negative reference voltage AVSS – 0.1 V(REFPx) – 0.75 V
V(REFPx) Absolute positive reference voltage V(REFNx) + 0.75 AVDD + 0.1 V
EXTERNAL CLOCK SOURCE
f(CLK) External clock frequency 0.5 4.096 4.5 MHz
Duty cycle 40% 60%
DIGITAL INPUTS
Input voltage DGND DVDD V
TEMPERATURE RANGE
TA Operating ambient temperature –40 125 °C
(1) AINP and AINN denote the positive and negative inputs of the PGA. AINx denotes one of the four available analog inputs.
PGA disabled means the low-noise PGA is powered down and bypassed. Gains of 1, 2, and 4 are still possible in this case.
See the Bypassing the PGA section for more information.
(2) Excluding the effects of offset and gain error.
Limited to ±[(AVDD – AVSS) – 0.4 V] / Gain, when the PGA is enabled.
(3) REFPx and REFNx denote one of two available differential reference input pairs.

6.4 Thermal Information

THERMAL METRIC(1) ADS1220 UNIT
VQFN (RVA) TSSOP (PW)
16 PINS 16 PINS
RθJA Junction-to-ambient thermal resistance 43.4 99.5 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 47.3 35.2 °C/W
RθJB Junction-to-board thermal resistance 18.4 44.3 °C/W
ψJT Junction-to-top characterization parameter 0.6 2.4 °C/W
ψJB Junction-to-board characterization parameter 18.4 43.8 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 2.0 n/a °C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953).

6.5 Electrical Characteristics

Minimum and maximum specifications apply from TA = –40°C to +125°C. Typical specifications are at TA = 25°C.
All specifications are at AVDD = 3.3 V, AVSS = 0 V, DVDD = 3.3 V, PGA enabled, DR = 20 SPS, and external Vref = 2.5 V (unless otherwise noted).(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG INPUTS
Absolute input current See the Typical Characteristics
Differential input current See the Typical Characteristics
SYSTEM PERFORMANCE
Resolution (no missing codes) 24 Bits
DR Data rate Normal mode 20, 45, 90, 175, 330, 600, 1000 SPS
Duty-cycle mode 5, 11.25, 22.5, 44, 82.5, 150, 250
Turbo mode 40, 90, 180, 350, 660, 1200, 2000
Noise (input-referred) See the Noise Performance section
INL Integral nonlinearity Gain = 1 to 128, VCM = 0.5 AVDD, best fit(2) –15 ±6 15 ppmFSR
VIO Input offset voltage PGA disabled, gain = 1 to 4, differential inputs ±4 µV
Gain = 1, differential inputs, TA = 25°C –30 ±4 30
Gain = 2 to 128, differential inputs ±4
Offset drift PGA disabled, gain = 1 to 4 0.25 µV/°C
Gain = 1 to 128, TA = –40°C to +85°C(2) 0.08 0.3
Gain = 1 to 128 0.25
Offset match Match between any two inputs ±20 µV
Gain error PGA disabled, gain = 1 to 4 ±0.015%
Gain = 1 to 128, TA = 25°C –0.1% ±0.015% 0.1%
Gain drift PGA disabled, gain = 1 to 4 1 ppm/°C
Gain = 1 to 128(2) 1 4
NMRR Normal-mode rejection ratio(2) 50 Hz ±3%, DR = 20 SPS, external CLK, 50/60 bit = 10 105 dB
60 Hz ±3%, DR = 20 SPS, external CLK, 50/60 bit = 11 105
50 Hz or 60 Hz ±3%, DR = 20 SPS,
external CLK, 50/60 bit = 01
90
CMRR Common-mode rejection ratio At dc, gain = 1 90 105 dB
f(CM) = 50 Hz, DR = 2000 SPS(2) 95 115
f(CM) = 60 Hz, DR = 2000 SPS(2) 95 115
PSRR Power-supply rejection ratio AVDD at dc, VCM = 0.5 AVDD, gain = 1 80 105 dB
DVDD at dc, VCM = 0.5 AVDD, gain = 1(2) 100 115
INTERNAL VOLTAGE REFERENCE
Initial accuracy TA = 25°C 2.045 2.048 2.051 V
Reference drift(2) 5 30 ppm/°C
Long-term drift 1000 hours 110 ppm
VOLTAGE REFERENCE INPUTS
Reference input current REFP0 = Vref, REFN0 = AVSS ±10 nA
INTERNAL OSCILLATOR
Internal oscillator accuracy Normal mode –2% ±1% 2%
EXCITATION CURRENT SOURCES (IDACs)
Current settings 10, 50, 100, 250, 500, 1000, 1500 µA
Compliance voltage All current settings AVDD – 0.9 V
Accuracy All current settings, each IDAC –6% ±1% 6%
Current match Between IDACs (not valid for 10-µA setting) ±0.3%
Temperature drift Each IDAC (not valid for 10-µA setting) 50 ppm/°C
Temperature drift matching Between IDACs (not valid for 10-µA setting) 10 ppm/°C
TEMPERATURE SENSOR
Conversion resolution 14 Bits
Temperature resolution 0.03125 °C
Accuracy TA = 0°C to +75°C –0.5 ±0.25 0.5 °C
TA = –40°C to +125°C –1 ±0.5 1
Accuracy vs analog supply voltage 0.0625 0.25 °C/V
LOW-SIDE POWER SWITCH
RON On-resistance 3.5 5.5 Ω
Current through switch 30 mA
DIGITAL INPUTS/OUTPUTS
VIH High-level input voltage 0.7 DVDD DVDD V
VIL Low-level input voltage DGND 0.3 DVDD V
VOH High-level output voltage IOH = 3 mA 0.8 DVDD V
VOL Low-level output voltage IOL = 3 mA 0.2 DVDD V
IH Input leakage, high VIH = 5.5 V –10 10 µA
IL Input leakage, low VIL = DGND –10 10 µA
POWER SUPPLY
IAVDD Analog supply current(3) Power-down mode 0.1 3 µA
Duty-cycle mode, PGA disabled 65
Duty-cycle mode, gain = 1 to 16 95
Duty-cycle mode, gain = 32 115
Duty-cycle mode, gain = 64, 128 135
Normal mode, PGA disabled 240
Normal mode, gain = 1 to 16 340 490
Normal mode, gain = 32 425
Normal mode, gain = 64, 128 510
Turbo mode, PGA disabled 360
Turbo mode, gain = 1 to 16 540
Turbo mode, gain = 32 715
Turbo mode, gain = 64, 128 890
IDVDD Digital supply current(3) Power-down mode 0.3 5 µA
Duty-cycle mode 55
Normal mode 75 110
Turbo mode 95
PD Power dissipation(3) Duty-cycle mode, PGA disabled 0.4 mW
Normal mode, gain = 1 to 16 1.4
Turbo mode, gain = 1 to 16 2.1
(1) PGA disabled means the low-noise PGA is powered down and bypassed. Gains of 1, 2, and 4 are still possible in this case.
See the Bypassing the PGA section for more information.
(2) Minimum and maximum values are ensured by design and characterization data.
(3) Internal voltage reference selected, internal oscillator enabled, IDACs turned off, and continuous conversion mode.
Analog supply current increases by 70 µA, typ (normal mode, turbo mode) when selecting an external reference.
Analog supply current increases by 190 µA (typ) when enabling the IDACs (excludes the actual IDAC current).

6.6 SPI Timing Requirements

over operating ambient temperature range and DVDD = 2.3 V to 5.5 V (unless otherwise noted)
MIN MAX UNIT
td(CSSC) Delay time, CS falling edge to first SCLK rising edge(2) 50 ns
td(SCCS) Delay time, final SCLK falling edge to CS rising edge 25 ns
tw(CSH) Pulse duration, CS high 50 ns
tc(SC) SCLK period 150 ns
tw(SCH) Pulse duration, SCLK high 60 ns
tw(SCL) Pulse duration, SCLK low 60 ns
tsu(DI) Setup time, DIN valid before SCLK falling edge 50 ns
th(DI) Hold time, DIN valid after SCLK falling edge 25 ns
SPI timeout(1) Normal mode, duty-cycle mode 13955 t(MOD)
Turbo mode 27910 t(MOD)
(1) See the SPI Timeout section for more information.
t(MOD) = 1 / f(MOD). Modulator frequency f(MOD) = 256 kHz (normal mode, duty-cycle mode) and 512 kHz (turbo mode), when using the internal oscillator or an external 4.096-MHz clock.
(2) CS can be tied low permanently in case the serial bus is not shared with any other device.
ADS1220 tim_req_bas683.gif
NOTE: Single-byte communication is shown. Actual communication may be multiple bytes.
Figure 1. Serial Interface Timing Requirements

6.7 SPI Switching Characteristics

over operating ambient temperature range, DVDD = 2.3 V to 5.5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tp(CSDO) Propagation delay time,
CS falling edge to DOUT driven
DOUT load = 20 pF || 10 kΩ to DGND 50 ns
tp(SCDO) Propagation delay time,
SCLK rising edge to valid new DOUT
DOUT load = 20 pF || 10 kΩ to DGND 0 50 ns
tp(CSDOZ) Propagation delay time,
CS rising edge to DOUT high impedance
DOUT load = 20 pF || 10 kΩ to DGND 50 ns
ADS1220 swi_char_bas683.gif
NOTE: Single-byte communication is shown. Actual communication may be multiple bytes.
Figure 2. Serial Interface Switching Characteristics

6.8 Typical Characteristics

At TA = 25°C, AVDD = 3.3 V, AVSS = 0 V, and PGA enabled using external Vref = 2.5 V (unless otherwise noted).
ADS1220 C017_bas501.png
AVDD = 3.3 V
Figure 3. Input-Referred Offset Voltage vs Temperature
ADS1220 C019_bas501.png
AVDD = 3.3 V
Figure 5. Gain Error vs Temperature
ADS1220 C025_bas501.png
AVDD = 3.3 V, external 2.5-V reference, normal mode
Figure 7. Integral Nonlinearity vs
Differential Input Signal
ADS1220 C043_bas501.png
AVDD = 3.3 V, internal reference, normal mode
Figure 9. Integral Nonlinearity vs
Differential Input Signal
ADS1220 C042_bas501.png
TA = 25°C, data from 5490 devices
Figure 11. Internal Reference Voltage Histogram
ADS1220 C002_bas501.png
DVDD = 3.3 V, normal mode
Figure 13. Internal Oscillator Accuracy vs Temperature
ADS1220 C030_bas501.png
AVDD = 3.3 V, PGA enabled, TA = –40°C
Figure 15. Absolute Input Current vs
Absolute Input Voltage
ADS1220 C032_bas501.png
AVDD = 3.3 V, PGA enabled, TA = 85°C
Figure 17. Absolute Input Current vs
Absolute Input Voltage
ADS1220 C038_bas501.png
AVDD = 3.3 V, PGA enabled, AINP = AIN0, AINN = AIN1
Figure 19. Differential Input Current vs
Differential Input Voltage
ADS1220 C034_bas501.png
AVDD = 3.3 V, PGA disabled, TA = –40°C
Figure 21. Absolute Input Current vs
Absolute Input Voltage
ADS1220 C036_bas501.png
AVDD = 3.3 V, PGA disabled, TA = 85°C
Figure 23. Absolute Input Current vs
Absolute Input Voltage
ADS1220 C040_bas501.png
AVDD = 3.3 V, PGA disabled, AINP = AIN0, AINN = AIN1
Figure 25. Differential Input Current vs
Differential Input Voltage
ADS1220 C006_bas501.png
Figure 27. IDAC Accuracy vs Compliance Voltage
ADS1220 C007_bas501.png
Figure 29. IDAC Matching vs Temperature
ADS1220 C012_bas501.png
AVDD = 3.3 V, internal reference, turbo mode
Figure 31. IAVDD vs Temperature
ADS1220 C004_bas501.png
Normal mode, internal reference
Figure 33. IAVDD vs AVDD
ADS1220 C014_bas501.png
DVDD = 3.3 V
Figure 35. IDVDD vs Temperature
ADS1220 C001_bas501.png
Figure 37. Low-Side Power Switch RON vs Temperature
ADS1220 C018_bas501.png
AVDD = 5.0 V
Figure 4. Input-Referred Offset Voltage vs Temperature
ADS1220 C020_bas501.png
AVDD = 5.0 V
Figure 6. Gain Error vs Temperature
ADS1220 C029_bas501.png
AVDD = 5.0 V, external 2.5-V reference, normal mode
Figure 8. Integral Nonlinearity vs
Differential Input Signal
ADS1220 C044_bas501.png
AVDD = 5.0 V, internal reference, normal mode
Figure 10. Integral Nonlinearity vs
Differential Input Signal
ADS1220 C021_bas501.png
Figure 12. Internal Reference Voltage vs Temperature
ADS1220 C016_bas501.png
Figure 14. AVDD Power-Supply Rejection Ratio vs Frequency
ADS1220 C031_bas501.png
AVDD = 3.3 V, PGA enabled, TA = 25°C
Figure 16. Absolute Input Current vs
Absolute Input Voltage
ADS1220 C033_bas501.png
AVDD = 3.3 V, PGA enabled, TA = 125°C
Figure 18. Absolute Input Current vs
Absolute Input Voltage
ADS1220 C039_bas501.png
AVDD = 3.3 V, PGA enabled, AINP = AIN3, AINN = AIN2
Figure 20. Differential Input Current vs
Differential Input Voltage
ADS1220 C035_bas501.png
AVDD = 3.3 V, PGA disabled, TA = 25°C
Figure 22. Absolute Input Current vs
Absolute Input Voltage
ADS1220 C037_bas501.png
AVDD = 3.3 V, PGA disabled, TA = 125°C
Figure 24. Absolute Input Current vs
Absolute Input Voltage
ADS1220 C041_bas501.png
AVDD = 3.3 V, PGA disabled, AINP = AIN3, AINN = AIN2
Figure 26. Differential Input Current vs
Differential Input Voltage
ADS1220 C005_bas501.png
Figure 28. IDAC Accuracy vs Temperature
ADS1220 C011_bas501.png
AVDD = 3.3 V, internal reference, normal mode
Figure 30. IAVDD vs Temperature
ADS1220 C013_bas501.png
AVDD = 3.3 V, internal reference, duty-cycle mode
Figure 32. IAVDD vs Temperature
ADS1220 C010_bas501.png
Figure 34. IDVDD vs DVDD
ADS1220 C015_bas501.png
Figure 36. Internal Temperature Sensor Accuracy vs Temperature