SBAS534E July   2011  – January 2016 ADS4249

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. ADS424x, ADS422x Family Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics: ADS4249 (250 MSPS)
    6. 7.6  Electrical Characteristics: General
    7. 7.7  Digital Characteristics
    8. 7.8  LVDS and CMOS Modes Timing Requirements
    9. 7.9  LVDS Timings at Lower Sampling Frequencies
    10. 7.10 CMOS Timings at Lower Sampling Frequencies
    11. 7.11 Serial Interface Timing Characteristics
    12. 7.12 Reset Timing (Only when Serial Interface is Used)
    13. 7.13 Typical Characteristics
      1. 7.13.1 Typical Characteristics: ADS4249
      2. 7.13.2 Typical Characteristics: Contour
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Digital Functions
      2. 8.3.2 Gain for SFDR, SNR Trade-Off
      3. 8.3.3 Offset Correction
      4. 8.3.4 Power-Down
        1. 8.3.4.1 Global Power-Down
        2. 8.3.4.2 Channel Standby
        3. 8.3.4.3 Input Clock Stop
      5. 8.3.5 Output Data Format
    4. 8.4 Device Functional Modes
      1. 8.4.1 Output Interface Modes
        1. 8.4.1.1 Output Interface
        2. 8.4.1.2 DDR LVDS Outputs
        3. 8.4.1.3 LVDS Buffer
        4. 8.4.1.4 Parallel CMOS Interface
        5. 8.4.1.5 CMOS Interface Power Dissipation
        6. 8.4.1.6 Multiplexed Mode of Operation
    5. 8.5 Programming
      1. 8.5.1 Parallel Configuration Only
      2. 8.5.2 Serial Interface Configuration Only
      3. 8.5.3 Using Both Serial Interface and Parallel Controls
      4. 8.5.4 Parallel Configuration Details
      5. 8.5.5 Serial Interface Details
        1. 8.5.5.1 Register Initialization
        2. 8.5.5.2 Serial Register Readout
    6. 8.6 Register Maps
      1. 8.6.1 Serial Register Map
      2. 8.6.2 Description of Serial Registers
        1. 8.6.2.1  Register Address 00h (Default = 00h)
        2. 8.6.2.2  Register Address 01h (Default = 00h)
        3. 8.6.2.3  Register Address 01h (Default = 00h)
        4. 8.6.2.4  Register Address 25h (Default = 00h)
        5. 8.6.2.5  Register Address 29h (Default = 00h)
        6. 8.6.2.6  Register Address 2Bh (Default = 00h)
        7. 8.6.2.7  Register Address 3Dh (Default = 00h)
        8. 8.6.2.8  Register Address 3Fh (Default = 00h)
        9. 8.6.2.9  Register Address 40h (Default = 00h)
        10. 8.6.2.10 Register Address 41h (Default = 00h)
        11. 8.6.2.11 Register Address 42h (Default = 00h)
        12. 8.6.2.12 Register Address 45h (Default = 00h)
        13. 8.6.2.13 Register Address 4Ah (Default = 00h)
        14. 8.6.2.14 Register Address 58h (Default = 00h)
        15. 8.6.2.15 Register Address BFh (Default = 00h)
        16. 8.6.2.16 Register Address C1h (Default = 00h)
        17. 8.6.2.17 Register Address CFh (Default = 00h)
        18. 8.6.2.18 Register Address EFh (Default = 00h)
        19. 8.6.2.19 Register Address F1h (Default = 00h)
        20. 8.6.2.20 Register Address F2h (Default = 00h)
        21. 8.6.2.21 Register Address 2h (Default = 00h)
        22. 8.6.2.22 Register Address D5h (Default = 00h)
        23. 8.6.2.23 Register Address D7h (Default = 00h)
        24. 8.6.2.24 Register Address DBh (Default = 00h)
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Theory of Operation
      2. 9.1.2 Analog Input
        1. 9.1.2.1 Drive Circuit Requirements
        2. 9.1.2.2 Driving Circuit
      3. 9.1.3 Clock Input
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Analog Input
        2. 9.2.2.2 Common Mode Voltage Output (VCM)
        3. 9.2.2.3 Clock Driver
        4. 9.2.2.4 Digital Interface
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
    1. 10.1 Sharing DRVDD and AVDD Supplies
    2. 10.2 Using DC-DC Power Supplies
    3. 10.3 Power Supply Bypassing
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Grounding
      2. 11.1.2 Exposed Pad
      3. 11.1.3 Routing Analog Inputs
      4. 11.1.4 Routing Digital Inputs
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
        1. 12.1.1.1 Definition of Specifications
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

11 Layout

11.1 Layout Guidelines

11.1.1 Grounding

A single ground plane is sufficient to give good performance, provided the analog, digital, and clock sections of the board are cleanly partitioned. See the ADS4226 Evaluation Module (SLAU333) for details on layout and grounding.

11.1.2 Exposed Pad

In addition to providing a path for heat dissipation, the PowerPAD is also electrically connected internally to the digital ground. Therefore, the exposed pad must be soldered to the ground plane for best thermal and electrical performance. For detailed information, see application notes QFN Layout Guidelines (SLOA122) and QFN/SON PCB Attachment (SLUA271).

11.1.3 Routing Analog Inputs

Routing differential analog input pairs (INP_x and INM_x) close to each other is advisable. To minimize the possibility of coupling from a channel analog input to the sampling clock, the analog input pairs of both channels must be routed perpendicular to the sampling clock; see the ADS4226 Evaluation Module (SLAU333) for reference routing. Figure 85 illustrates a snapshot of the PCB layout from the ADS42xxEVM.

11.1.4 Routing Digital Inputs

The digital outputs must be routed away from the analog inputs and any noise sensitive circuits. Avoid routing the digital outputs in parallel to any analog trace. The digital outputs must be routed over a solid ground plane all the way to the FPGA. Keep the digital traces as short as possible to reduce EMI emissions. The traces must be matched length to maintain timing, however mismatches in the trace lengths can be taken into account by including the delay differences in the FPGA timing constraints.

11.2 Layout Example

ADS4249 ai_pcb_snapshot_bas550.gif Figure 85. ADS42xxEVM PCB Layout