SLAS525D July   2007  – December 2017 ADS5474

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Characteristics
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Clock Inputs
      2. 7.3.2 Digital Outputs
    4. 7.4 Device Functional Modes
      1. 7.4.1 External Voltage Reference
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Clocking Source for ADC5474
        2. 8.2.2.2 Amplifier Selection
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
    1. 9.1 Power Supplies
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 PowerPAD Package
        1. 10.1.1.1 Assembly Process
    2. 10.2 Layout Example
    3. 10.3 Thermal Considerations
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Device Nomenclature
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Specifications

Absolute Maximum Ratings

over operating free-air temperature range, unless otherwise noted.(1)
MIN MAX UNIT
Supply voltage AVDD5 to GND 6 V
AVDD3 to GND 5
DVDD3 to GND 5
Analog input to GND Valid when supplies are on and within normal ranges. See additional information in the Power Supplies portion of the applications information in the back of the datasheet regarding Clock and Analog Inputs when the supplies are off. –0.3 (AVDD5 + 0.3) V
Clock input to GND –0.3 (AVDD5 + 0.3) V
CLK to CLK –2.5 2.5 V
Digital data output to GND –0.3 (DVDD3 + 0.3) V
Operating temperature range –40 85 °C
Maximum junction temperature +150 °C
Storage temperature range –65 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) 2000 V
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

MIN NOM MAX UNIT
SUPPLIES
AVDD5 Analog supply voltage 4.75 5 5.25 V
AVDD3 Analog supply voltage 3.1 3.3 3.6 V
DVDD3 Output driver supply voltage 3 3.3 3.6 V
ANALOG INPUT
Differential input range 2.2 VPP
VCM Input common mode 3.1 V
DIGITAL OUTPUT (DRY, DATA, OVR)
Maximum differential output load 10 pF
CLOCK INPUT (CLK)
CLK input sample rate (sine wave) 20 404 MSPS
Clock amplitude, differential sine wave (see Figure 37) 0.5 5 VPP
Clock duty cycle (see Figure 31) 40% 50% 60%
TA Operating free-air temperature –40 +85 °C

Thermal Information

THERMAL METRIC(1) ADS5474 UNIT
PFP (HTQFP)
80 PINS
RθJA Junction-to-ambient thermal resistance 25.9 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 7.6 °C/W
RθJB Junction-to-board thermal resistance 9.8 °C/W
ψJT Junction-to-top characterization parameter 0.2 °C/W
ψJB Junction-to-board characterization parameter 9.7 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 0.2 °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Electrical Characteristics

Typical values at TA = 25°C: minimum and maximum values over full temperature range TMIN = –40°C to TMAX = 85°C, sampling rate = 400 MSPS, 50% clock duty cycle, AVDD5 = 5 V, AVDD3 = 3.3 V, DVDD3 = 3.3 V, –1 dBFS differential input, and 3-VPP differential clock, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Resolution 14 Bits
ANALOG INPUTS
Differential input range 2.2 VPP
Analog input common-mode voltage Self-biased; see VCM specification below 3.1 V
Input resistance (dc) Each input to VCM 500 Ω
Input capacitance Each input to GND 2.3 pF
Analog input bandwidth (–3dB) 1.44 GHz
CMRR Common-mode rejection ratio Common-mode signal < 50 MHz
(see Figure 27)
100 dB
INTERNAL REFERENCE VOLTAGE
VREF Reference voltage 2.4 V
VCM Analog input common-mode voltage reference output With internal VREF. Provided as an output via the VCM pin for dc-coupled applications. If an external VREF is used, the VCM pin tracks as illustrated in Figure 42 2.9 3.1 3.3 V
VCM temperature coefficient –0.8 mV/°C
DYNAMIC ACCURACY
No missing codes Assured
DNL Differential linearity error fIN = 70 MHz –0.99 ±0.7 1.5 LSB
INL Integral linearity error fIN = 70 MHz –3 ±1 3 LSB
Offset error –11 11 mV
Offset temperature coefficient 0.02 mV/°C
Gain error –5 5 %FS
Gain temperature coefficient –0.02 %FS/°C
POWER SUPPLY
IAVDD5 5-V analog supply current VIN = full-scale, fIN = 70 MHz,
fS = 400 MSPS
338 372 mA
IAVDD3 3.3-V analog supply current VIN = full-scale, fIN = 70 MHz,
fS = 400 MSPS
185 201 mA
IDVDD3 3.3-V digital supply current
(includes LVDS)
VIN = full-scale, fIN = 70 MHz,
fS = 400 MSPS
75 83 mA
Total power dissipation 2.5 2.797 W
Power-up time From turn-on of AVDD5 50 μs
Wake-up time From PWD pin switched from HIGH (PWD active) to LOW (ADC awake)
(see Figure 28)
5 μs
Power-down power dissipation PWD pin = logic HIGH 50 350 mW
PSRR Power-supply rejection ratio,
AVDD5 supply
Without 0.1-μF board supply capacitors, with < 1-MHz supply noise (see Figure 46) 75 dB
PSRR Power-supply rejection ratio,
AVDD3 supply
Without 0.1-μF board supply capacitors, with < 1-MHz supply noise (see Figure 46) 90 dB
PSRR Power-supply rejection ratio,
DVDD3 supply
Without 0.1-μF board supply capacitors, with < 1-MHz supply noise (see Figure 46) 110 dB
DYNAMIC AC CHARACTERISTICS
SNR Signal-to-noise ratio fIN = 30 MHz 70.3 dBFS
fIN = 70 MHz 68.3 70.2
fIN = 130 MHz 70.1
fIN = 230 MHz 68 69.8
fIN = 351 MHz 69.1
fIN = 451 MHz 68.4
fIN = 651 MHz 67.5
fIN = 751 MHz 66.6
fIN = 999 MHz 64.7
SFDR Spurious-free dynamic range fIN = 30 MHz 88 dBc
fIN = 70 MHz 74 86
fIN = 130 MHz 80
fIN = 230 MHz 71 80
fIN = 351 MHz 76
fIN = 451 MHz 71
fIN = 651 MHz 60
fIN = 751 MHz 55
fIN = 999 MHz 46
HD2 Second-harmonic fIN = 30 MHz 89 dBc
fIN = 70 MHz 87
fIN = 130 MHz 90
fIN = 230 MHz 84
fIN = 351 MHz 76
fIN = 451 MHz 71
fIN = 651 MHz 74
fIN = 751 MHz 70
fIN = 999 MHz 55
HD3 Third-harmonic fIN = 30 MHz 93 dBc
fIN = 70 MHz 86
fIN = 130 MHz 80
fIN = 230 MHz 80
fIN = 351 MHz 85
fIN = 451 MHz 71
fIN = 651 MHz 60
fIN = 751 MHz 55
fIN = 999 MHz 46
Worst harmonic, spur
(other than HD2 and HD3)
fIN = 30 MHz 95 dBc
fIN = 70 MHz 93
fIN = 130 MHz 85
fIN = 230 MHz 85
fIN = 351 MHz 87
fIN = 451 MHz 87
fIN = 651 MHz 90
fIN = 751 MHz 87
fIN = 999 MHz 80
THD Total harmonic distortion fIN = 30 MHz 86 dBc
fIN = 70 MHz 83
fIN = 130 MHz 78
fIN = 230 MHz 77
fIN = 351 MHz 75
fIN = 451 MHz 68
fIN = 651 MHz 60
fIN = 751 MHz 55
fIN = 999 MHz 45
SINAD Signal-to-noise and distortion fIN = 30 MHz 69.2 dBc
fIN = 70 MHz 67 68.9
fIN = 130 MHz 68.5
fIN = 230 MHz 65.5 68.2
fIN = 351 MHz 67.3
fIN = 451 MHz 64.8
fIN = 651 MHz 58.5
fIN = 751 MHz 54
fIN = 999 MHz 45.4
Two-tone SFDR fIN1 = 69 MHz, fIN2 = 70 MHz,
each tone at –7 dBFS
93 dBFS
fIN1 = 69 MHz, fIN2 = 70 MHz,
each tone at –16 dBFS
95
fIN1 = 297.5 MHz, fIN2 = 302.5 MHz,
each tone at –7 dBFS
85
fIN1 = 297.5 MHz, fIN2 = 302.5 MHz,
each tone at –16 dBFS
83
ENOB Effective number of bits fIN = 70 MHz 10.8 11.2 Bits
fIN = 230 MHz 10.6 10.9
RMS idle-channel noise Inputs tied to common-mode 1.8 LSB
DIGITAL OUTPUTS
VOD Differential output voltage (±) 247 350 454 mV
VOC Common-mode output voltage 1.125 1.375 V
DIGITAL INPUTS
VIH High level input voltage PWD (pin 33) 2 V
VIL Low level input voltage PWD (pin 33) 0.8 V
IIH High level input current PWD (pin 33) 1 μA
IIL Low level input current PWD (pin 33) –1 μA
Input capacitance PWD (pin 33) 2 pF

Timing Characteristics

Typical values at TA = 25°C: minimum and maximum values over full temperature range TMIN = –40°C to TMAX = 85°C, sampling rate = 400 MSPS, 50% clock duty cycle, AVDD5 = 5 V, AVDD3 = 3.3 V, DVDD3 = 3.3 V, and 3-VPP differential clock, unless otherwise noted.(1)
TEST CONDITIONS MIN NOM MAX UNIT
ta Aperture delay 200 ps
Aperture jitter, rms Internal jitter of the ADC 103 fs
Latency 3.5 cycles
tCLK Clock period 2.5 50 ns
tCLKH Clock pulse duration, high 1 ns
tCLKL Clock pulse duration, low 1 ns
tDRY CLK to DRY delay(2) Zero crossing, 10-pF parasitic loading to GND on each output pin 1000 1400 1800 ps
tDATA CLK to DATA/OVR delay(2) Zero crossing, 10-pF parasitic loading to GND on each output pin 800 1400 2000 ps
tSKEW DATA to DRY skew tDATA – tDRY, 10-pF parasitic loading to GND on each output pin –500 0 500 ps
tRISE DRY/DATA/OVR rise time 10-pF parasitic loading to GND on each output pin 500 ps
tFALL DRY/DATA/OVR fall time 10-pF parasitic loading to GND on each output pin 500 ps
Timing parameters are ensured by design or characterization, but not production tested.
DRY, DATA, and OVR are updated on the falling edge of CLK. The latency must be added to tDATA to determine the overall propagation delay.
ADS5474 time_las515.gif
Polarity of DRY is undetermined. For further information, see the Digital Outputs section.
Figure 1. Timing Diagram

Typical Characteristics

At TA = 25°C, sampling rate = 400 MSPS, 50% clock duty cycle, 3-VPP differential sinusoidal clock, analog input amplitude = –1 dBFS, AVDD5 = 5 V, AVDD3 = 3.3 V, and DVDD3 = 3.3 V, unless otherwise noted.
ADS5474 tc_fft_30mhz_las525.gif
Figure 2. Spectral Performance FFT for 30 MHz Input Signal
ADS5474 tc_fft_130mhz_las525.gif
Figure 4. Spectral Performance FFT for 130 MHz Input Signal
ADS5474 tc_fft_350mhz_las525.gif
Figure 6. Spectral Performance FFT for 351 MHz Input Signal
ADS5474 tc_fft_750mhz_las525.gif
Figure 8. Spectral Performance FFT for 751 MHz Input Signal
ADS5474 tc_2tone_69m_7_las525.gif
Figure 10. Two-Tone Intermodulation Distortion (FFT for 69 MHz and 70 MHz at –7 dBFS)
ADS5474 tc_2tone_69m_16_las525.gif
Figure 12. Two-Tone Intermodulation Distortion (FFT for 69 MHz and 70 MHz at –16 dBFS)
ADS5474 tc_g_resp-in_freq_las525.gif
Figure 14. Normalized Gain Response vs Input Frequency
ADS5474 tc_inl_las525.gif
Figure 16. Integral Nonlinearity
ADS5474 tc_ac-amp_70mhz_las525.gif
Figure 18. AC Performance vs Input Amplitude (70 MHz Input Signal)
ADS5474 tc_2tone-in_amp_las525.gif
Figure 20. Two-Tone Performance vs Input Amplitude (f1 = 297.5 MHz and f2 = 302.5 MHz)
ADS5474 tc_snr-avdd5_las525.gif
Figure 22. SNR vs AVDD5 Over Temperature
ADS5474 tc_snr-avdd3_las525.gif
Figure 24. SNR vs AVDD3 Over Temperature
ADS5474 tc_snr-dvdd3_tmp_las525.gif
Figure 26. SNR vs DVDD3 Over Temperature
ADS5474 tc_adc_wakeup_las525.gif
Figure 28. ADC Wakeup Time
ADS5474 ai_snr-clk_vcm_las525.gif
Figure 30. SNR vs Clock Common Mode
ADS5474 tc_fft_70mhz_las525.gif
Figure 3. Spectral Performance FFT for 70 MHz Input Signal
ADS5474 tc_fft_230mhz_las525.gif
Figure 5. Spectral Performance FFT for 230 MHz Input Signal
ADS5474 tc_fft_450mhz_las525.gif
Figure 7. Spectral Performance FFT for 451 MHz Input Signal
ADS5474 tc_fft_1kmhz_las525.gif
Figure 9. Spectral Performance FFT for 999 MHz Input Signal
ADS5474 tc_2tone_297m_7_las525.gif
Figure 11. Two-Tone Intermodulation Distortion (FFT for 297.5 MHz and 302.5 MHz at –7 dBFS)
ADS5474 tc_2tone_297m_16_las525.gif
Figure 13. Two-Tone Intermodulation Distortion (FFT for 297.5 MHz and 302.5 MHz at –16 dBFS)
ADS5474 tc_dnl_las525.gif
Figure 15. Differential Nonlinearity
ADS5474 tc_noise_vcm_las525.gif
Figure 17. Noise Histogram With Inputs Shorted
ADS5474 tc_ac-amp_230mhz_las525.gif
Figure 19. AC Performance vs Input Amplitude (230 MHz Input Signal)
ADS5474 tc_sfdr-avdd5_las525.gif
Figure 21. SFDR vs AVDD5 Over Temperature
ADS5474 tc_sfdr-avdd3_las525.gif
Figure 23. SFDR vs AVDD3 Over Temperature
ADS5474 tc_sfdr-dvdd3_tmp_las525.gif
Figure 25. SFDR vs DVDD3 Over Temperature
ADS5474 tc_cmrr-frq_las525.gif
Figure 27. CMRR vs Common-Mode Input Frequency
ADS5474 ai_sfdr-clk_vcm_las525.gif
Figure 29. SFDR vs Clock Common Mode
ADS5474 ai_sfdr-clk_dcy_las525.gif
Figure 31. SFDR vs Clock Duty Cycle
ADS5474 tc_snr-fin_fs_las525.gif
Figure 32. SNR vs Input Frequency And Sampling Frequency
ADS5474 tc_sfdr-fin_fs_las525.gif
Figure 33. SFDR vs Input Frequency And Sampling Frequency