JAJSNU4A May   2023  – June 2024 AFE78201 , AFE88201

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Electrical Characteristics
    6. 5.6  Timing Requirements
    7. 5.7  Timing Diagrams
    8. 5.8  Typical Characteristics: VOUT DAC
    9. 5.9  Typical Characteristics: ADC
    10. 5.10 Typical Characteristics: Reference
    11. 5.11 Typical Characteristics: Power Supply
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Digital-to-Analog Converter (DAC) Overview
        1. 6.3.1.1 DAC Resistor String
        2. 6.3.1.2 DAC Buffer Amplifier
        3. 6.3.1.3 DAC Transfer Function
        4. 6.3.1.4 DAC Gain and Offset Calibration
        5. 6.3.1.5 Programmable Slew Rate
        6. 6.3.1.6 DAC Register Structure and CLEAR State
      2. 6.3.2  Analog-to-Digital Converter (ADC) Overview
        1. 6.3.2.1 ADC Operation
        2. 6.3.2.2 ADC Custom Channel Sequencer
        3. 6.3.2.3 ADC Synchronization
        4. 6.3.2.4 ADC Offset Calibration
        5. 6.3.2.5 External Monitoring Inputs
        6. 6.3.2.6 Temperature Sensor
        7. 6.3.2.7 Self-Diagnostic Multiplexer
        8. 6.3.2.8 ADC Bypass
      3. 6.3.3  Programmable Out-of-Range Alarms
        1. 6.3.3.1 Alarm-Based Interrupts
        2. 6.3.3.2 Alarm Action Configuration Register
        3. 6.3.3.3 Alarm Voltage Generator
        4. 6.3.3.4 Temperature Sensor Alarm Function
        5. 6.3.3.5 Internal Reference Alarm Function
        6. 6.3.3.6 ADC Alarm Function
        7. 6.3.3.7 Fault Detection
      4. 6.3.4  IRQ
      5. 6.3.5  Internal Reference
      6. 6.3.6  Integrated Precision Oscillator
      7. 6.3.7  Precision Oscillator Diagnostics
      8. 6.3.8  One-Time Programmable (OTP) Memory
      9. 6.3.9  GPIO
      10. 6.3.10 Timer
      11. 6.3.11 Unique Chip Identifier (ID)
      12. 6.3.12 Scratch Pad Register
    4. 6.4 Device Functional Modes
      1. 6.4.1 Register Built-In Self-Test (RBIST)
      2. 6.4.2 DAC Power-Down Mode
      3. 6.4.3 Reset
    5. 6.5 Programming
      1. 6.5.1 Communication Setup
        1. 6.5.1.1 SPI Mode
        2. 6.5.1.2 UART Mode
      2. 6.5.2 GPIO Programming
      3. 6.5.3 Serial Peripheral Interface (SPI)
        1. 6.5.3.1 SPI Frame Definition
        2. 6.5.3.2 SPI Read and Write
        3. 6.5.3.3 Frame Error Checking
        4. 6.5.3.4 Synchronization
      4. 6.5.4 UART Interface
        1. 6.5.4.1 UART Break Mode (UBM)
      5. 6.5.5 Status Bits
      6. 6.5.6 Watchdog Timer
  8. Register Maps
    1. 7.1 AFEx8201 Registers
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Multichannel Configuration
    2. 8.2 Typical Application
      1. 8.2.1 Analog Output Module
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 XTR305
            1. 8.2.1.2.1.1 Current-Output Mode
            2. 8.2.1.2.1.2 Voltage Output Mode
            3. 8.2.1.2.1.3 Diagnostic Features
        3. 8.2.1.3 Application Curves
    3. 8.3 Initialization Setup
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 ドキュメントの更新通知を受け取る方法
    3. 9.3 サポート・リソース
    4. 9.4 Trademarks
    5. 9.5 静電気放電に関する注意事項
    6. 9.6 用語集
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • RRU|24
サーマルパッド・メカニカル・データ
発注情報

DAC Gain and Offset Calibration

The AFEx8201 provide DAC gain and offset calibration capability to correct for end-point errors present in the system. Implement the gain and offset calibration using two registers, DAC_GAIN.GAIN and DAC_OFFSET.OFFSET. Update DAC_DATA register after gain or offset codes are changed for the new values to take effect. The DAC_GAIN can be programmed from 0.5 to 1.499985 using Equation 2.

Equation 2. D A C _ G A I N = 1 2 + G A I N 2 N

where

  • N = DAC_GAIN resolution in bits: 16 for the AFE88201 and 14 for the AFE78201.
  • GAIN is the decimal value of the DAC_GAIN register setting.
  • GAIN data are left justified; the last two LSBs in the DAC_GAIN register are ignored for the AFE78201.

The example DAC_GAIN settings for the AFE88201 are shown in Table 6-1.

Table 6-1 DAC_GAIN Setting vs GAIN Code
DAC_GAIN GAIN (HEX)
0.5 0x0000
1.0 0x8000
1.499985 0xFFFF

The DAC_OFFSET is stored in the DAC_OFFSET register using 2's-complement encoding. The DAC_OFFSET value can be programmed from –2(N–1) to 2(N–1) – 1 using Equation 3.

Equation 3. D A C _ O F F S E T = - O F F S E T M S B × 2 ( N - 1 ) + i = 0 ( N - 2 ) O F F S E T i × 2 i

where

  • N = DAC_OFFSET resolution in bits: 16 for the AFE88201 and 14 for the AFE78201.
  • OFFSETMSB = MSB bit of the DAC_OFFSET register.
  • OFFSETi = The rest of the bits of the DAC_OFFSET register.
  • i = Position of the bit in the DAC_OFFSET register.
  • OFFSET data are left justified; the last two LSBs in the DAC_OFFSET register are ignored for the device.

The most significant bit determines the sign of the number and is called the sign bit. The sign bit has the weight of –2(N–1) as shown in Equation 3.

The example DAC_OFFSET settings for the AFE88201 are shown in Table 6-2.

Table 6-2 DAC_OFFSET Setting vs OFFSET Code
DAC_OFFSET OFFSET (HEX)
32767 0x7FFF
1 0x0001
0 0x0000
–1 0xFFFF
–2 0xFFFE
–32768 0x8000

The following transfer function is applied to the DAC_DATA.DATA based on the DAC_GAIN and DAC_OFFSET values:

Equation 4. D A C _ C O D E = ( D A T A × D A C _ G A I N ) + D A C _ O F F S E T

where

  • DAC_CODE is the internal signal applied to the DAC.
  • DATA is the decimal value of the DAC_DATA register.
  • DAC_GAIN and DAC_OFFSET are the user calibration settings.
  • DATA data are left justified; the last two LSBs in the DAC_DATA register are ignored for the AFE78201.

Substituting DAC_GAIN and DAC_OFFSET in Equation 4 with Equation 2 and Equation 3 results in:

Equation 5. D A C _ C O D E = ( D A T A × 1 2 + G A I N 2 N ) - O F F S E T M S B × 2 ( N - 1 ) + i = 0 ( N - 2 ) O F F S E T i × 2 i

The multiplier is implemented using truncation instead of rounding. This truncation can cause a difference of one LSB if rounding is expected. Figure 6-2 shows the DAC calibration path.

AFE78201 AFE88201 DAC
                    Calibration Path Figure 6-2 DAC Calibration Path