JAJSDZ0J October   2011  – April 2016 AM3351 , AM3352 , AM3354 , AM3356 , AM3357 , AM3358 , AM3359

PRODUCTION DATA.  

  1. 1デバイスの概要
    1. 1.1 特長
    2. 1.2 アプリケーション
    3. 1.3 概要
    4. 1.4 機能ブロック図
  2. 2改訂履歴
  3. 3Device Comparison
    1. 3.1 Related Products
  4. 4Terminal Configuration and Functions
    1. 4.1 Pin Diagram
      1. 4.1.1 ZCE Package Pin Maps (Top View)
      2. 4.1.2 ZCZ Package Pin Maps (Top View)
    2. 4.2 Pin Attributes
    3. 4.3 Signal Descriptions
      1. 4.3.1 External Memory Interfaces
      2. 4.3.2 General-Purpose IOs
      3. 4.3.3 Miscellaneous
        1. 4.3.3.1 eCAP
        2. 4.3.3.2 eHRPWM
        3. 4.3.3.3 eQEP
        4. 4.3.3.4 Timer
      4. 4.3.4 PRU-ICSS
        1. 4.3.4.1 PRU0
        2. 4.3.4.2 PRU1
      5. 4.3.5 Removable Media Interfaces
      6. 4.3.6 Serial Communication Interfaces
        1. 4.3.6.1 CAN
        2. 4.3.6.2 GEMAC_CPSW
        3. 4.3.6.3 I2C
        4. 4.3.6.4 McASP
        5. 4.3.6.5 SPI
        6. 4.3.6.6 UART
        7. 4.3.6.7 USB
  5. 5Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Power-On Hours (POH)
    4. 5.4  Operating Performance Points (OPPs)
    5. 5.5  Recommended Operating Conditions
    6. 5.6  Power Consumption Summary
    7. 5.7  DC Electrical Characteristics
    8. 5.8  Thermal Resistance Characteristics for ZCE and ZCZ Packages
    9. 5.9  External Capacitors
      1. 5.9.1 Voltage Decoupling Capacitors
        1. 5.9.1.1 Core Voltage Decoupling Capacitors
        2. 5.9.1.2 I/O and Analog Voltage Decoupling Capacitors
      2. 5.9.2 Output Capacitors
    10. 5.10 Touch Screen Controller and Analog-to-Digital Subsystem Electrical Parameters
  6. 6Power and Clocking
    1. 6.1 Power Supplies
      1. 6.1.1 Power Supply Slew Rate Requirement
      2. 6.1.2 Power-Down Sequencing
      3. 6.1.3 VDD_MPU_MON Connections
      4. 6.1.4 Digital Phase-Locked Loop Power Supply Requirements
    2. 6.2 Clock Specifications
      1. 6.2.1 Input Clock Specifications
      2. 6.2.2 Input Clock Requirements
        1. 6.2.2.1 OSC0 Internal Oscillator Clock Source
        2. 6.2.2.2 OSC0 LVCMOS Digital Clock Source
        3. 6.2.2.3 OSC1 Internal Oscillator Clock Source
        4. 6.2.2.4 OSC1 LVCMOS Digital Clock Source
        5. 6.2.2.5 OSC1 Not Used
      3. 6.2.3 Output Clock Specifications
      4. 6.2.4 Output Clock Characteristics
        1. 6.2.4.1 CLKOUT1
        2. 6.2.4.2 CLKOUT2
  7. 7Peripheral Information and Timings
    1. 7.1  Parameter Information
      1. 7.1.1 Timing Parameters and Board Routing Analysis
    2. 7.2  Recommended Clock and Control Signal Transition Behavior
    3. 7.3  OPP50 Support
    4. 7.4  Controller Area Network (CAN)
      1. 7.4.1 DCAN Electrical Data and Timing
    5. 7.5  DMTimer
      1. 7.5.1 DMTimer Electrical Data and Timing
    6. 7.6  Ethernet Media Access Controller (EMAC) and Switch
      1. 7.6.1 EMAC and Switch Electrical Data and Timing
        1. 7.6.1.1 EMAC/Switch MDIO Electrical Data and Timing
        2. 7.6.1.2 EMAC and Switch MII Electrical Data and Timing
        3. 7.6.1.3 EMAC and Switch RMII Electrical Data and Timing
        4. 7.6.1.4 EMAC and Switch RGMII Electrical Data and Timing
    7. 7.7  External Memory Interfaces
      1. 7.7.1 General-Purpose Memory Controller (GPMC)
        1. 7.7.1.1 GPMC and NOR Flash—Synchronous Mode
        2. 7.7.1.2 GPMC and NOR Flash—Asynchronous Mode
        3. 7.7.1.3 GPMC and NAND Flash—Asynchronous Mode
      2. 7.7.2 mDDR(LPDDR), DDR2, DDR3, DDR3L Memory Interface
        1. 7.7.2.1 mDDR (LPDDR) Routing Guidelines
          1. 7.7.2.1.1 Board Designs
          2. 7.7.2.1.2 LPDDR Interface
            1. 7.7.2.1.2.1 LPDDR Interface Schematic
            2. 7.7.2.1.2.2 Compatible JEDEC LPDDR Devices
            3. 7.7.2.1.2.3 PCB Stackup
            4. 7.7.2.1.2.4 Placement
            5. 7.7.2.1.2.5 LPDDR Keepout Region
            6. 7.7.2.1.2.6 Bulk Bypass Capacitors
            7. 7.7.2.1.2.7 High-Speed Bypass Capacitors
            8. 7.7.2.1.2.8 Net Classes
            9. 7.7.2.1.2.9 LPDDR Signal Termination
          3. 7.7.2.1.3 LPDDR CK and ADDR_CTRL Routing
        2. 7.7.2.2 DDR2 Routing Guidelines
          1. 7.7.2.2.1 Board Designs
          2. 7.7.2.2.2 DDR2 Interface
            1. 7.7.2.2.2.1  DDR2 Interface Schematic
            2. 7.7.2.2.2.2  Compatible JEDEC DDR2 Devices
            3. 7.7.2.2.2.3  PCB Stackup
            4. 7.7.2.2.2.4  Placement
            5. 7.7.2.2.2.5  DDR2 Keepout Region
            6. 7.7.2.2.2.6  Bulk Bypass Capacitors
            7. 7.7.2.2.2.7  High-Speed (HS) Bypass Capacitors
            8. 7.7.2.2.2.8  Net Classes
            9. 7.7.2.2.2.9  DDR2 Signal Termination
            10. 7.7.2.2.2.10 DDR_VREF Routing
          3. 7.7.2.2.3 DDR2 CK and ADDR_CTRL Routing
        3. 7.7.2.3 DDR3 and DDR3L Routing Guidelines
          1. 7.7.2.3.1 Board Designs
            1. 7.7.2.3.1.1 DDR3 versus DDR2
          2. 7.7.2.3.2 DDR3 Device Combinations
          3. 7.7.2.3.3 DDR3 Interface
            1. 7.7.2.3.3.1  DDR3 Interface Schematic
            2. 7.7.2.3.3.2  Compatible JEDEC DDR3 Devices
            3. 7.7.2.3.3.3  PCB Stackup
            4. 7.7.2.3.3.4  Placement
            5. 7.7.2.3.3.5  DDR3 Keepout Region
            6. 7.7.2.3.3.6  Bulk Bypass Capacitors
            7. 7.7.2.3.3.7  High-Speed Bypass Capacitors
              1. 7.7.2.3.3.7.1 Return Current Bypass Capacitors
            8. 7.7.2.3.3.8  Net Classes
            9. 7.7.2.3.3.9  DDR3 Signal Termination
            10. 7.7.2.3.3.10 DDR_VREF Routing
            11. 7.7.2.3.3.11 VTT
          4. 7.7.2.3.4 DDR3 CK and ADDR_CTRL Topologies and Routing Definition
            1. 7.7.2.3.4.1 Two DDR3 Devices
              1. 7.7.2.3.4.1.1 CK and ADDR_CTRL Topologies, Two DDR3 Devices
              2. 7.7.2.3.4.1.2 CK and ADDR_CTRL Routing, Two DDR3 Devices
            2. 7.7.2.3.4.2 One DDR3 Device
              1. 7.7.2.3.4.2.1 CK and ADDR_CTRL Topologies, One DDR3 Device
              2. 7.7.2.3.4.2.2 CK and ADDR_CTRL Routing, One DDR3 Device
          5. 7.7.2.3.5 Data Topologies and Routing Definition
            1. 7.7.2.3.5.1 DQS[x] and DQ[x] Topologies, Any Number of Allowed DDR3 Devices
            2. 7.7.2.3.5.2 DQS[x] and DQ[x] Routing, Any Number of Allowed DDR3 Devices
          6. 7.7.2.3.6 Routing Specification
            1. 7.7.2.3.6.1 CK and ADDR_CTRL Routing Specification
            2. 7.7.2.3.6.2 DQS[x] and DQ[x] Routing Specification
    8. 7.8  I2C
      1. 7.8.1 I2C Electrical Data and Timing
    9. 7.9  JTAG Electrical Data and Timing
    10. 7.10 LCD Controller (LCDC)
      1. 7.10.1 LCD Interface Display Driver (LIDD Mode)
      2. 7.10.2 LCD Raster Mode
    11. 7.11 Multichannel Audio Serial Port (McASP)
      1. 7.11.1 McASP Device-Specific Information
      2. 7.11.2 McASP Electrical Data and Timing
    12. 7.12 Multichannel Serial Port Interface (McSPI)
      1. 7.12.1 McSPI Electrical Data and Timing
        1. 7.12.1.1 McSPI—Slave Mode
        2. 7.12.1.2 McSPI—Master Mode
    13. 7.13 Multimedia Card (MMC) Interface
      1. 7.13.1 MMC Electrical Data and Timing
    14. 7.14 Programmable Real-Time Unit Subsystem and Industrial Communication Subsystem (PRU-ICSS)
      1. 7.14.1 Programmable Real-Time Unit (PRU-ICSS PRU)
        1. 7.14.1.1 PRU-ICSS PRU Direct Input/Output Mode Electrical Data and Timing
        2. 7.14.1.2 PRU-ICSS PRU Parallel Capture Mode Electrical Data and Timing
        3. 7.14.1.3 PRU-ICSS PRU Shift Mode Electrical Data and Timing
      2. 7.14.2 PRU-ICSS EtherCAT (PRU-ICSS ECAT)
        1. 7.14.2.1 PRU-ICSS ECAT Electrical Data and Timing
      3. 7.14.3 PRU-ICSS MII_RT and Switch
        1. 7.14.3.1 PRU-ICSS MDIO Electrical Data and Timing
        2. 7.14.3.2 PRU-ICSS MII_RT Electrical Data and Timing
      4. 7.14.4 PRU-ICSS Universal Asynchronous Receiver Transmitter (PRU-ICSS UART)
    15. 7.15 Universal Asynchronous Receiver Transmitter (UART)
      1. 7.15.1 UART Electrical Data and Timing
      2. 7.15.2 UART IrDA Interface
  8. 8Device and Documentation Support
    1. 8.1 Device Nomenclature
    2. 8.2 Tools and Software
    3. 8.3 Documentation Support
    4. 8.4 Related Links
    5. 8.5 Community Resources
    6. 8.6 商標
    7. 8.7 静電気放電に関する注意事項
    8. 8.8 Glossary
  9. 9Mechanical, Packaging, and Orderable Information
    1. 9.1 Via Channel
    2. 9.2 Packaging Information

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • ZCZ|324
サーマルパッド・メカニカル・データ
発注情報

Specifications

Absolute Maximum Ratings

over junction temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
VDD_MPU(3) Supply voltage for the MPU core domain –0.5 1.5 V
VDD_CORE Supply voltage for the core domain –0.5 1.5 V
CAP_VDD_RTC(4) Supply voltage for the RTC core domain –0.5 1.5 V
VPP(5) Supply voltage for the FUSE ROM domain –0.5 2.2 V
VDDS_RTC Supply voltage for the RTC domain –0.5 2.1 V
VDDS_OSC Supply voltage for the System oscillator –0.5 2.1 V
VDDS_SRAM_CORE_BG Supply voltage for the Core SRAM LDOs –0.5 2.1 V
VDDS_SRAM_MPU_BB Supply voltage for the MPU SRAM LDOs –0.5 2.1 V
VDDS_PLL_DDR Supply voltage for the DPLL DDR –0.5 2.1 V
VDDS_PLL_CORE_LCD Supply voltage for the DPLL Core and LCD –0.5 2.1 V
VDDS_PLL_MPU Supply voltage for the DPLL MPU –0.5 2.1 V
VDDS_DDR Supply voltage for the DDR I/O domain –0.5 2.1 V
VDDS Supply voltage for all dual-voltage I/O domains –0.5 2.1 V
VDDA1P8V_USB0 Supply voltage for USBPHY –0.5 2.1 V
VDDA1P8V_USB1(6) Supply voltage for USBPHY –0.5 2.1 V
VDDA_ADC Supply voltage for ADC –0.5 2.1 V
VDDSHV1 Supply voltage for the dual-voltage I/O domain –0.5 3.8 V
VDDSHV2(6) Supply voltage for the dual-voltage I/O domain –0.5 3.8 V
VDDSHV3(6) Supply voltage for the dual-voltage I/O domain –0.5 3.8 V
VDDSHV4 Supply voltage for the dual-voltage I/O domain –0.5 3.8 V
VDDSHV5 Supply voltage for the dual-voltage I/O domain –0.5 3.8 V
VDDSHV6 Supply voltage for the dual-voltage I/O domain –0.5 3.8 V
VDDA3P3V_USB0 Supply voltage for USBPHY –0.5 4 V
VDDA3P3V_USB1(6) Supply voltage for USBPHY –0.5 4 V
USB0_VBUS(7) Supply voltage for USB VBUS comparator input –0.5 5.25 V
USB1_VBUS(6)(7) Supply voltage for USB VBUS comparator input –0.5 5.25 V
DDR_VREF Supply voltage for the DDR SSTL and HSTL reference voltage –0.3 1.1 V
Steady state max voltage at all I/O pins(8) –0.5 V to I/O supply voltage + 0.3 V
USB0_ID(9) Steady state maximum voltage for the USB ID input –0.5 2.1 V
USB1_ID(6)(9) Steady state maximum voltage for the USB ID input –0.5 2.1 V
Transient overshoot and undershoot specification at I/O terminal 25% of corresponding I/O supply voltage for up to 30% of signal period
Latch-up performance(10) Class II (105°C) 45 mA
Storage temperature, Tstg(11) –55 155 °C
  1. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
  2. All voltage values are with respect to their associated VSS or VSSA_x.
  3. Not available on the ZCE package. VDD_MPU is merged with VDD_CORE on the ZCE package.
  4. This supply is sourced from an internal LDO when RTC_KALDO_ENn is low. If RTC_KALDO_ENn is high, this supply must be sourced from an external power supply.
  5. During functional operation, this pin is a no connect.
  6. Not available on the ZCE package.
  7. This terminal is connected to a fail-safe I/O and does not have a dependence on any I/O supply voltage.
  8. This parameter applies to all I/O terminals which are not fail-safe and the requirement applies to all values of I/O supply voltage. For example, if the voltage applied to a specific I/O supply is 0 volts the valid input voltage range for any I/O powered by that supply will be –0.5 to +0.3 V. Apply special attention anytime peripheral devices are not powered from the same power sources used to power the respective I/O supply. It is important the attached peripheral never sources a voltage outside the valid input voltage range, including power supply ramp-up and ramp-down sequences.
  9. This terminal is connected to analog circuits in the respective USB PHY. The circuit sources a known current while measuring the voltage to determine if the terminal is connected to VSSA_USB with a resistance less than 10 Ω or greater than 100 kΩ. The terminal should be connected to ground for USB host operation or open-circuit for USB peripheral operation, and should never be connected to any external voltage source.
  10. Based on JEDEC JESD78D [IC Latch-Up Test].
  11. For tape and reel the storage temperature range is [–10°C; +50°C] with a maximum relative humidity of 70%. TI recommends returning to ambient room temperature before usage.
  12. Fail-safe I/O terminals are designed such they do not have dependencies on the respective I/O power supply voltage. This allows external voltage sources to be connected to these I/O terminals when the respective I/O power supplies are turned off. The USB0_VBUS and USB1_VBUS are the only fail-safe I/O terminals. All other I/O terminals are not fail-safe and the voltage applied to them should be limited to the value defined by the steady state max. Voltage at all I/O pins parameter in Section 5.1.

ESD Ratings

VALUE UNIT
VESD Electrostatic discharge (ESD) performance: Human Body Model (HBM), per ANSI/ESDA/JEDEC JS001(1) ±2000 V
Charged Device Model (CDM), per JESD22-C101(2) ±500
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Power-On Hours (POH)

Table 5-1 Reliability Data(1)(2)(3)(4)

OPERATING CONDITION COMMERCIAL INDUSTRIAL EXTENDED INDUSTRIAL EXTENDED
JUNCTION TEMP (TJ) LIFETIME (POH)(5) JUNCTION TEMP (TJ) LIFETIME (POH)(5) JUNCTION TEMP (TJ) LIFETIME (POH)(5) JUNCTION TEMP (TJ) LIFETIME (POH)(5)
Nitro 0°C to 90°C 100K –40°C to 90°C 100K –40°C to 105°C 37K –40°C to 125°C
Turbo 0°C to 90°C 100K –40°C to 90°C 100K –40°C to 105°C 80K –40°C to 125°C
OPP120 0°C to 90°C 100K –40°C to 90°C 100K –40°C to 105°C 100K –40°C to 125°C
OPP100 0°C to 90°C 100K –40°C to 90°C 100K –40°C to 105°C 100K –40°C to 125°C 35K
OPP50 0°C to 90°C 100K –40°C to 90°C 100K –40°C to 105°C 100K –40°C to 125°C 95K
  1. The power-on hours (POH) information in this table is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard terms and conditions for TI semiconductor products.
  2. To avoid significant degradation, the device power-on hours (POH) must be limited as described in this table.
  3. Logic functions and parameter values are not assured out of the range specified in the recommended operating conditions.
  4. The previous notations cannot be deemed a warranty or deemed to extend or modify the warranty under TI's standard terms and conditions for TI semiconductor products.
  5. POH = Power-on hours when the device is fully functional.

Operating Performance Points (OPPs)

Device OPPs are defined in Table 5-2 through Table 5-9.

Table 5-2 VDD_CORE OPPs for ZCZ Package
With Device Revision Code "Blank"(1)

VDD_CORE OPP
Device Rev. "Blank"
VDD_CORE DDR3, DDR3L(2) DDR2(2) mDDR(2) L3 and L4
MIN NOM MAX
OPP100 1.056 V 1.100 V 1.144 V 400 MHz 266 MHz 200 MHz 200 and 100 MHz
OPP50 0.912 V 0.950 V 0.988 V 125 MHz 90 MHz 100 and 50 MHz
  1. Frequencies in this table indicate maximum performance for a given OPP condition.
  2. This parameter represents the maximum memory clock frequency. Because data is transferred on both edges of the clock, double-data rate (DDR), the maximum data rate is two times the maximum memory clock frequency defined in this table.

Table 5-3 VDD_MPU OPPs for ZCZ Package
With Device Revision Code "Blank"(1)

VDD_MPU OPP
Device Rev. "Blank"
VDD_MPU ARM (A8)
MIN NOM MAX
Turbo 1.210 V 1.260 V 1.326 V 720 MHz
OPP120 1.152 V 1.200 V 1.248 V 600 MHz
OPP100(2) 1.056 V 1.100 V 1.144 V 500 MHz
OPP100(3) 1.056 V 1.100 V 1.144 V 275 MHz
  1. Frequencies in this table indicate maximum performance for a given OPP condition.
  2. Applies to all orderable AM335__ZCZ_50 (500-MHz speed grade) or higher devices.
  3. Applies to all orderable AM335__ZCZ_27 (275-MHz speed grade) devices.

Table 5-4 Valid Combinations of VDD_CORE and VDD_MPU OPPs for ZCZ Package
With Device Revision Code "Blank"

VDD_CORE VDD_MPU
OPP50 OPP100
OPP100 OPP100
OPP100 OPP120
OPP100 Turbo

Table 5-5 VDD_CORE OPPs for ZCE Package
With Device Revision Code "Blank"(1)

VDD_CORE OPP
Device Rev. "Blank"
VDD_MPU(2) ARM (A8) DDR3, DDR3L(3) DDR2(3) mDDR(3) L3 and L4
MIN NOM MAX
OPP100 1.056 V 1.100 V 1.144 V 500 MHz 400 MHz 266 MHz 200 MHz 200 and 100 MHz
OPP100 1.056 V 1.100 V 1.144 V 275 MHz 400 MHz 266 MHz 200 MHz 200 and 100 MHz
  1. Frequencies in this table indicate maximum performance for a given OPP condition.
  2. VDD_MPU is merged with VDD_CORE on the ZCE package.
  3. This parameter represents the maximum memory clock frequency. Because data is transferred on both edges of the clock, double-data rate (DDR), the maximum data rate is two times the maximum memory clock frequency defined in this table.

Table 5-6 VDD_CORE OPPs for ZCZ Package
With Device Revision Code "A" or Newer
(1)

VDD_CORE OPP
Rev "A" or Newer
VDD_CORE DDR3, DDR3L(2) DDR2(2) mDDR(2) L3 and L4
MIN NOM MAX
OPP100 1.056 V 1.100 V 1.144 V 400 MHz 266 MHz 200 MHz 200 and 100 MHz
OPP50 0.912 V 0.950 V 0.988 V 125 MHz 90 MHz 100 and 50 MHz
  1. Frequencies in this table indicate maximum performance for a given OPP condition.
  2. This parameter represents the maximum memory clock frequency. Because data is transferred on both edges of the clock, double-data rate (DDR), the maximum data rate is two times the maximum memory clock frequency defined in this table.

Table 5-7 VDD_MPU OPPs for ZCZ Package
With Device Revision Code "A" or Newer
(1)

VDD_MPU OPP
Rev "A" or Newer
VDD_MPU ARM (A8)
MIN NOM MAX
Nitro 1.272 V 1.325 V 1.378 V 1 GHz
Turbo 1.210 V 1.260 V 1.326 V 800 MHz
OPP120 1.152 V 1.200 V 1.248 V 720 MHz
OPP100(2) 1.056 V 1.100 V 1.144 V 600 MHz
OPP100(3) 1.056 V 1.100 V 1.144 V 300 MHz
OPP50 0.912 V 0.950 V 0.988 V 300 MHz
  1. Frequencies in this table indicate maximum performance for a given OPP condition.
  2. Applies to all orderable AM335__ZCZ_60 (600-MHz speed grade) or higher devices.
  3. Applies to all orderable AM335__ZCZ_30 (300-MHz speed grade) devices.

Table 5-8 Valid Combinations of VDD_CORE and VDD_MPU OPPs for ZCZ Package With Device Revision Code "A" or Newer

VDD_CORE VDD_MPU
OPP50 OPP50
OPP50 OPP100
OPP100 OPP50
OPP100 OPP100
OPP100 OPP120
OPP100 Turbo
OPP100 Nitro

Table 5-9 VDD_CORE OPPs for ZCE Package
With Device Revision Code "A" or Newer(1)

VDD_CORE OPP
Rev "A" or newer
VDD_MPU(2) ARM (A8) DDR3, DDR3L(3) DDR2(3) mDDR(3) L3 and L4
MIN NOM MAX
OPP100 1.056 V 1.100 V 1.144 V 600 MHz 400 MHz 266 MHz 200 MHz 200 and 100 MHz
OPP100 1.056 V 1.100 V 1.144 V 300 MHz 400 MHz 266 MHz 200 MHz 200 and 100 MHz
OPP50 0.912 V 0.950 V 0.988 V 300 MHz 125 MHz 90 MHz 100 and 50 MHz
  1. Frequencies in this table indicate maximum performance for a given OPP condition.
  2. VDD_MPU is merged with VDD_CORE on the ZCE package.
  3. This parameter represents the maximum memory clock frequency. Because data is transferred on both edges of the clock, double-data rate (DDR), the maximum data rate is two times the maximum memory clock frequency defined in this table.

Recommended Operating Conditions

over junction temperature range (unless otherwise noted)
SUPPLY NAME DESCRIPTION MIN NOM MAX UNIT
VDD_CORE(1) Supply voltage range for core domain; OPP100 1.056 1.100 1.144 V
Supply voltage range for core domain; OPP50 0.912 0.950 0.988
VDD_MPU(1)(2) Supply voltage range for MPU domain, Nitro 1.272 1.325 1.378 V
Supply voltage range for MPU domain; Turbo 1.210 1.260 1.326
Supply voltage range for MPU domain; OPP120 1.152 1.200 1.248
Supply voltage range for MPU domain; OPP100 1.056 1.100 1.144
Supply voltage range for MPU domain; OPP50 0.912 0.950 0.988
CAP_VDD_RTC(3) Supply voltage range for RTC domain input 0.900 1.100 1.250 V
VDDS_RTC Supply voltage range for RTC domain 1.710 1.800 1.890 V
VDDS_DDR Supply voltage range for DDR I/O domain (DDR2) 1.710 1.800 1.890 V
Supply voltage range for DDR I/O domain (DDR3) 1.425 1.500 1.575
Supply voltage range for DDR I/O domain (DDR3L) 1.283 1.350 1.418
VDDS(4) Supply voltage range for all dual-voltage I/O domains 1.710 1.800 1.890 V
VDDS_SRAM_CORE_BG Supply voltage range for Core SRAM LDOs, analog 1.710 1.800 1.890 V
VDDS_SRAM_MPU_BB Supply voltage range for MPU SRAM LDOs, analog 1.710 1.800 1.890 V
VDDS_PLL_DDR(5) Supply voltage range for DPLL DDR, analog 1.710 1.800 1.890 V
VDDS_PLL_CORE_LCD(5) Supply voltage range for DPLL CORE and LCD, analog 1.710 1.800 1.890 V
VDDS_PLL_MPU(5) Supply voltage range for DPLL MPU, analog 1.710 1.800 1.890 V
VDDS_OSC Supply voltage range for system oscillator I/Os, analog 1.710 1.800 1.890 V
VDDA1P8V_USB0(5) Supply voltage range for USBPHY and PER DPLL, analog, 1.8 V 1.710 1.800 1.890 V
VDDA1P8V_USB1(6) Supply voltage range for USB PHY, analog, 1.8 V 1.710 1.800 1.890 V
VDDA3P3V_USB0 Supply voltage range for USB PHY, analog, 3.3 V 3.135 3.300 3.465 V
VDDA3P3V_USB1(6) Supply voltage range for USB PHY, analog, 3.3 V 3.135 3.300 3.465 V
VDDA_ADC Supply voltage range for ADC, analog 1.710 1.800 1.890 V
VDDSHV1 Supply voltage range for dual-voltage I/O domain (1.8-V operation) 1.710 1.800 1.890 V
VDDSHV2(6) Supply voltage range for dual-voltage I/O domain (1.8-V operation) 1.710 1.800 1.890 V
VDDSHV3(6) Supply voltage range for dual-voltage I/O domain (1.8-V operation) 1.710 1.800 1.890 V
VDDSHV4 Supply voltage range for dual-voltage I/O domain (1.8-V operation) 1.710 1.800 1.890 V
VDDSHV5 Supply voltage range for dual-voltage I/O domain (1.8-V operation) 1.710 1.800 1.890 V
VDDSHV6 Supply voltage range for dual-voltage I/O domain (1.8-V operation) 1.710 1.800 1.890 V
VDDSHV1 Supply voltage range for dual-voltage I/O domain (3.3-V operation) 3.135 3.300 3.465 V
VDDSHV2(6) Supply voltage range for dual-voltage I/O domain (3.3-V operation) 3.135 3.300 3.465 V
VDDSHV3(6) Supply voltage range for dual-voltage I/O domain (3.3-V operation) 3.135 3.300 3.465 V
VDDSHV4 Supply voltage range for dual-voltage I/O domain (3.3-V operation) 3.135 3.300 3.465 V
VDDSHV5 Supply voltage range for dual-voltage I/O domain (3.3-V operation) 3.135 3.300 3.465 V
VDDSHV6 Supply voltage range for dual-voltage I/O domain (3.3-V operation) 3.135 3.300 3.465 V
DDR_VREF Voltage range for DDR SSTL and HSTL reference input (DDR2, DDR3, DDR3L) 0.49 × VDDS_DDR 0.50 × VDDS_DDR 0.51 × VDDS_DDR V
USB0_VBUS Voltage range for USB VBUS comparator input 0.000 5.000 5.250 V
USB1_VBUS(6) Voltage range for USB VBUS comparator input 0.000 5.000 5.250 V
USB0_ID Voltage range for the USB ID input  (7) V
USB1_ID(6) Voltage range for the USB ID input  (7) V
Operating temperature range, TJ Commercial temperature 0 90 °C
Industrial temperature –40 90
Extended temperature –40 105
  1. The supply voltage defined by OPP100 should be applied to this power domain before the device is released from reset.
  2. Not available on the ZCE package. VDD_MPU is merged with VDD_CORE on the ZCE package.
  3. This supply is sourced from an internal LDO when RTC_KALDO_ENn is low. If RTC_KALDO_ENn is high, this supply must be sourced from an external power supply.
  4. VDDS should be supplied irrespective of 1.8- or 3.3-V mode of operation of the dual-voltage I/Os.
  5. For more details on power supply requirements, see Section 6.1.4.
  6. Not available on the ZCE package.
  7. This terminal is connected to analog circuits in the respective USB PHY. The circuit sources a known current while measuring the voltage to determine if the terminal is connected to VSSA_USB with a resistance less than 10 Ω or greater than 100 kΩ. The terminal should be connected to ground for USB host operation or open-circuit for USB peripheral operation, and should never be connected to any external voltage source.

Power Consumption Summary

Table 5-10 summarizes the power consumption at the AM335x power terminals.

Table 5-10 Maximum Current Ratings at AM335x Power Terminals(1)

SUPPLY NAME DESCRIPTION MAX UNIT
VDD_CORE(2) Maximum current rating for the core domain; OPP100 400 mA
Maximum current rating for the core domain; OPP50 250
VDD_MPU(2) Maximum current rating for the MPU domain; Nitro at 1 GHz 1000 mA
Maximum current rating for the MPU domain; Turbo at 800 MHz 800
at 720 MHz 720
Maximum current rating for the MPU domain; OPP120 at 720 MHz 720
at 600 MHz 600
Maximum current rating for the MPU domain; OPP100 at 600 MHz 600
at 500 MHz 500
at 300 MHz 380
at 275 MHz 350
Maximum current rating for the MPU domain; OPP50 at 300 MHz 330
at 275 MHz 300
CAP_VDD_RTC(3) Maximum current rating for RTC domain input and LDO output 2 mA
VDDS_RTC Maximum current rating for the RTC domain 5 mA
VDDS_DDR Maximum current rating for DDR I/O domain 250 mA
VDDS Maximum current rating for all dual-voltage I/O domains 50 mA
VDDS_SRAM_CORE_BG Maximum current rating for core SRAM LDOs 10 mA
VDDS_SRAM_MPU_BB Maximum current rating for MPU SRAM LDOs 10 mA
VDDS_PLL_DDR Maximum current rating for the DPLL DDR 10 mA
VDDS_PLL_CORE_LCD Maximum current rating for the DPLL Core and LCD 20 mA
VDDS_PLL_MPU Maximum current rating for the DPLL MPU 10 mA
VDDS_OSC Maximum current rating for the system oscillator I/Os 5 mA
VDDA1P8V_USB0 Maximum current rating for USBPHY 1.8 V 25 mA
VDDA1P8V_USB1(4) Maximum current rating for USBPHY 1.8 V 25 mA
VDDA3P3V_USB0 Maximum current rating for USBPHY 3.3 V 40 mA
VDDA3P3V_USB1(4) Maximum current rating for USBPHY 3.3 V 40 mA
VDDA_ADC Maximum current rating for ADC 10 mA
VDDSHV1(5) Maximum current rating for dual-voltage I/O domain 50 mA
VDDSHV2(4) Maximum current rating for dual-voltage I/O domain 50 mA
VDDSHV3(4) Maximum current rating for dual-voltage I/O domain 50 mA
VDDSHV4 Maximum current rating for dual-voltage I/O domain 50 mA
VDDSHV5 Maximum current rating for dual-voltage I/O domain 50 mA
VDDSHV6 Maximum current rating for dual-voltage I/O domain 100 mA
  1. Current ratings specified in this table are worst-case estimates. Actual application power supply estimates could be lower. For more information, see AM335x Power Consumption Summary.
  2. VDD_MPU is merged with VDD_CORE and is not available separately on the ZCE package. The maximum current rating for VDD_CORE on the ZCE package is the sum of VDD_CORE and VDD_MPU shown in this table.
  3. This supply is sourced from an internal LDO when RTC_KALDO_ENn is low. If RTC_KALDO_ENn is high, this supply must be sourced from an external power supply.
  4. Not available on the ZCE package.
  5. VDDSHV1 and VDDSHV2 are merged in the ZCE package. The maximum current rating for VDDSHV1 on the ZCE package is the sum of VDDSHV1 and VDDSHV2 shown in this table.

Table 5-11 summarizes the power consumption of the AM335x low-power modes.

Table 5-11 AM335x Low-Power Modes Power Consumption Summary

POWER MODES APPLICATION STATE POWER DOMAINS, CLOCKS, AND VOLTAGE SUPPLY STATES NOM MAX UNIT
Standby DDR memory is in self-refresh and contents are preserved. Wake up from any GPIO. Cortex-A8 context/register contents are lost and must be saved before entering standby. On exit, context must be restored from DDR. For wakeup, boot ROM executes and branches to system resume. Power supplies:
  • All power supplies are ON.
  • VDD_MPU = 0.95 V (nom)
  • VDD_CORE = 0.95 V (nom)
Clocks:
  • Main Oscillator (OSC0) = ON
  • All DPLLs are in bypass.
Power domains:
  • PD_PER = ON
  • PD_MPU = OFF
  • PD_GFX = OFF
  • PD_WKUP = ON
DDR is in self-refresh.
16.5 22.0 mW
Deepsleep1 On-chip peripheral registers are preserved. Cortex-A8 context/registers are lost, so the application must save them to the L3 OCMC RAM or DDR before entering DeepSleep. DDR is in self-refresh. For wakeup, boot ROM executes and branches to system resume. Power supplies:
  • All power supplies are ON.
  • VDD_MPU = 0.95 V (nom)
  • VDD_CORE = 0.95 V (nom)
Clocks:
  • Main Oscillator (OSC0) = OFF
  • All DPLLs are in bypass.
Power domains:
  • PD_PER = ON
  • PD_MPU = OFF
  • PD_GFX = OFF
  • PD_WKUP = ON
DDR is in self-refresh.
6.0 10.0 mW
Deepsleep0 PD_PER peripheral and Cortex-A8/MPU register information will be lost. On-chip peripheral register (context) information of PD-PER domain must be saved by application to SDRAM before entering this mode. DDR is in self-refresh. For wakeup, boot ROM executes and branches to peripheral context restore followed by system resume. Power supplies:
  • All power supplies are ON.
  • VDD_MPU = 0.95 V (nom)
  • VDD_CORE = 0.95 V (nom)
Clocks:
  • Main Oscillator (OSC0) = OFF
  • All DPLLs are in bypass.
Power domains:
  • PD_PER = OFF
  • PD_MPU = OFF
  • PD_GFX = OFF
  • PD_WKUP = ON
DDR is in self-refresh.
3.0 4.3 mW

DC Electrical Characteristics

over recommended ranges of supply voltage and operating temperature (unless otherwise noted)(1)
PARAMETER MIN NOM MAX UNIT
DDR_RESETn,DDR_CSn0,DDR_CKE,DDR_CK,DDR_CKn,DDR_CASn,DDR_RASn,DDR_WEn,DDR_BA0,DDR_BA1,DDR_BA2,DDR_A0,DDR_A1,DDR_A2,DDR_A3,DDR_A4,DDR_A5,DDR_A6,DDR_A7,DDR_A8,DDR_A9,DDR_A10,DDR_A11,DDR_A12,DDR_A13,DDR_A14,DDR_A15,DDR_ODT,DDR_D0,DDR_D1,DDR_D2,DDR_D3,DDR_D4,DDR_D5,DDR_D6,DDR_D7,DDR_D8,DDR_D9,DDR_D10,DDR_D11,DDR_D12,DDR_D13,DDR_D14,DDR_D15,DDR_DQM0,DDR_DQM1,DDR_DQS0,DDR_DQSn0,DDR_DQS1,DDR_DQSn1 Pins (mDDR - LVCMOS Mode)
VIH High-level input voltage 0.65 × VDDS_DDR V
VIL Low-level input voltage 0.35 × VDDS_DDR V
VHYS Hysteresis voltage at an input 0.07 0.25 V
VOH High level output voltage, driver enabled, pullup or pulldown disabled IOH = 8 mA VDDS_DDR – 0.4 V
VOL Low level output voltage, driver enabled, pullup or pulldown disabled IOL = 8 mA 0.4 V
II Input leakage current, Receiver disabled, pullup or pulldown inhibited 10 µA
Input leakage current, Receiver disabled, pullup enabled –240 –80
Input leakage current, Receiver disabled, pulldown enabled 80 240
IOZ Total leakage current through the terminal connection of a driver-receiver combination that may include a pullup or pulldown.  The driver output is disabled and the pullup or pulldown is inhibited. 10 µA
DDR_RESETn,DDR_CSn0,DDR_CKE,DDR_CK,DDR_CKn,DDR_CASn,DDR_RASn,DDR_WEn,DDR_BA0,DDR_BA1,DDR_BA2,DDR_A0,DDR_A1,DDR_A2,DDR_A3,DDR_A4,DDR_A5,DDR_A6,DDR_A7,DDR_A8,DDR_A9,DDR_A10,DDR_A11,DDR_A12,DDR_A13,DDR_A14,DDR_A15,DDR_ODT,DDR_D0,DDR_D1,DDR_D2,DDR_D3,DDR_D4,DDR_D5,DDR_D6,DDR_D7,DDR_D8,DDR_D9,DDR_D10,DDR_D11,DDR_D12,DDR_D13,DDR_D14,DDR_D15,DDR_DQM0,DDR_DQM1,DDR_DQS0,DDR_DQSn0,DDR_DQS1,DDR_DQSn1 Pins (DDR2 - SSTL Mode)
VIH High-level input voltage DDR_VREF + 0.125 V
VHYS Hysteresis voltage at an input N/A V
VOH High-level output voltage, driver enabled, pullup or pulldown disabled IOH = 8 mA VDDS_DDR – 0.4 V
VOL Low-level output voltage, driver enabled, pullup or pulldown disabled IOL = 8 mA 0.4 V
II Input leakage current, Receiver disabled, pullup or pulldown inhibited 10 µA
Input leakage current, Receiver disabled, pullup enabled –240 –80
Input leakage current, Receiver disabled, pulldown enabled 80 240
IOZ Total leakage current through the terminal connection of a driver-receiver combination that may include a pullup or pulldown.  The driver output is disabled and the pullup or pulldown is inhibited. 10 µA
DDR_RESETn,DDR_CSn0,DDR_CKE,DDR_CK,DDR_CKn,DDR_CASn,DDR_RASn,DDR_WEn,DDR_BA0,DDR_BA1,DDR_BA2,DDR_A0,DDR_A1,DDR_A2,DDR_A3,DDR_A4,DDR_A5,DDR_A6,DDR_A7,DDR_A8,DDR_A9,DDR_A10,DDR_A11,DDR_A12,DDR_A13,DDR_A14,DDR_A15,DDR_ODT,DDR_D0,DDR_D1,DDR_D2,DDR_D3,DDR_D4,DDR_D5,DDR_D6,DDR_D7,DDR_D8,DDR_D9,DDR_D10,DDR_D11,DDR_D12,DDR_D13,DDR_D14,DDR_D15,DDR_DQM0,DDR_DQM1,DDR_DQS0,DDR_DQSn0,DDR_DQS1,DDR_DQSn1 Pins (DDR3, DDR3L - HSTL Mode)
VIH High-level input voltage VDDS_DDR = 1.5 V DDR_VREF + 0.1 V
VDDS_DDR = 1.35 V DDR_VREF + 0.09
VIL Low-level input voltage VDDS_DDR = 1.5 V DDR_VREF – 0.1 V
VDDS_DDR = 1.35 V DDR_VREF – 0.09
VHYS Hysteresis voltage at an input N/A V
VOH High-level output voltage, driver enabled, pullup or pulldown disabled IOH = 8 mA VDDS_DDR – 0.4 V
VOL Low-level output voltage, driver enabled, pullup or pulldown disabled IOL = 8 mA 0.4 V
II Input leakage current, Receiver disabled, pullup or pulldown inhibited 10 µA
Input leakage current, Receiver disabled, pullup enabled –240 –80
Input leakage current, Receiver disabled, pulldown enabled 80 240
IOZ Total leakage current through the terminal connection of a driver-receiver combination that may include a pullup or pulldown.  The driver output is disabled and the pullup or pulldown is inhibited. 10 µA
ECAP0_IN_PWM0_OUT,UART0_CTSn,UART0_RTSn,UART0_RXD,UART0_TXD,UART1_CTSn,UART1_RTSn,UART1_RXD,UART1_TXD,I2C0_SDA,I2C0_SCL,XDMA_EVENT_INTR0,XDMA_EVENT_INTR1,WARMRSTn,EXTINTn,TMS,TDO,USB0_DRVVBUS,USB1_DRVVBUS (VDDSHV6 = 1.8 V)
VIH High-level input voltage 0.65 × VDDSHV6 V
VIL Low-level input voltage 0.35 × VDDSHV6 V
VHYS Hysteresis voltage at an input 0.18 0.305 V
VOH High-level output voltage, driver enabled, pullup or pulldown disabled IOH = 4 mA VDDSHV6 – 0.45 V
VOL Low-level output voltage, driver enabled, pullup or pulldown disabled IOL = 4 mA 0.45 V
II Input leakage current, Receiver disabled, pullup or pulldown inhibited 8 µA
Input leakage current, Receiver disabled, pullup enabled –161 –100 –52
Input leakage current, Receiver disabled, pulldown enabled 52 100 170
IOZ Total leakage current through the terminal connection of a driver-receiver combination that may include a pullup or pulldown.  The driver output is disabled and the pullup or pulldown is inhibited. 8 µA
ECAP0_IN_PWM0_OUT,UART0_CTSn,UART0_RTSn,UART0_RXD,UART0_TXD,UART1_CTSn,UART1_RTSn,UART1_RXD,UART1_TXD,I2C0_SDA,I2C0_SCL,XDMA_EVENT_INTR0,XDMA_EVENT_INTR1,WARMRSTn,EXTINTn,TMS,TDO,USB0_DRVVBUS,USB1_DRVVBUS (VDDSHV6 = 3.3 V)
VIH High-level input voltage 2 V
VIL Low-level input voltage 0.8 V
VHYS Hysteresis voltage at an input 0.265 0.44 V
VOH High-level output voltage, driver enabled, pullup or pulldown disabled IOH = 4 mA VDDSHV6 – 0.45 V
VOL Low-level output voltage, driver enabled, pullup or pulldown disabled IOL = 4 mA 0.45 V
II Input leakage current, Receiver disabled, pullup or pulldown inhibited 18 µA
Input leakage current, Receiver disabled, pullup enabled –243 –100 –19
Input leakage current, Receiver disabled, pulldown enabled 51 110 210
IOZ Total leakage current through the terminal connection of a driver-receiver combination that may include a pullup or pulldown.  The driver output is disabled and the pullup or pulldown is inhibited. 18 µA
TCK (VDDSHV6 = 1.8 V)
VIH High-level input voltage 1.45 V
VIL Low-level input voltage 0.46 V
VHYS Hysteresis voltage at an input 0.4 V
II Input leakage current, Receiver disabled, pullup or pulldown inhibited 8 µA
Input leakage current, Receiver disabled, pullup enabled –161 –100 –52
Input leakage current, Receiver disabled, pulldown enabled 52 100 170
TCK (VDDSHV6 = 3.3 V)
VIH High-level input voltage 2.15 V
VIL Low-level input voltage 0.46 V
VHYS Hysteresis voltage at an input 0.4 V
II Input leakage current, Receiver disabled, pullup or pulldown inhibited 18 µA
Input leakage current, Receiver disabled, pullup enabled –243 –100 –19
Input leakage current, Receiver disabled, pulldown enabled 51 110 210
PWRONRSTn (VDDSHV6 = 1.8 or 3.3 V)(2)
VIH High-level input voltage 1.35 V
VIL Low-level input voltage 0.5 V
VHYS Hysteresis voltage at an input 0.07 V
II Input leakage current VI = 1.8 V 0.1 µA
VI = 3.3 V 2
RTC_PWRONRSTn
VIH High-level input voltage 0.65 × VDDS_RTC V
VIL Low-level input voltage 0.35 × VDDS_RTC V
VHYS Hysteresis voltage at an input 0.065 V
II Input leakage current –1 1 µA
PMIC_POWER_EN
VOH High-level output voltage, driver enabled, pullup or pulldown disabled IOH = 6 mA VDDS_RTC – 0.45 V
VOL Low-level output voltage, driver enabled, pullup or pulldown disabled IOL = 6 mA 0.45 V
II Input leakage current, Receiver disabled, pullup or pulldown inhibited –1 1 µA
Input leakage current, Receiver disabled, pullup enabled –200 –40
Input leakage current, Receiver disabled, pulldown enabled 40 200
IOZ Total leakage current through the terminal connection of a driver-receiver combination that may include a pullup or pulldown.  The driver output is disabled and the pullup or pulldown is inhibited. –1 1 µA
EXT_WAKEUP
VIH High-level input voltage 0.65 × VDDS_RTC V
VIL Low-level input voltage 0.35 × VDDS_RTC V
VHYS Hysteresis voltage at an input 0.15 V
II Input leakage current, Receiver disabled, pullup or pulldown inhibited –1 1 µA
Input leakage current, Receiver disabled, pullup enabled –200 –40
Input leakage current, Receiver disabled, pulldown enabled 40 200
XTALIN (OSC0)
VIH High-level input voltage 0.65 × VDDS_OSC V
VIL Low-level input voltage 0.35 × VDDS_OSC V
RTC_XTALIN (OSC1)
VIH High-level input voltage 0.65 × VDDS_RTC V
VIL Low-level input voltage 0.35 × VDDS_RTC V
All other LVCMOS pins (VDDSHVx = 1.8 V; x = 1 to 6)
VIH High-level input voltage 0.65 × VDDSHVx V
VIL Low-level input voltage 0.35 × VDDSHVx V
VHYS Hysteresis voltage at an input 0.18 0.305 V
VOH High-level output voltage, driver enabled, pullup or pulldown disabled IOH = 6 mA VDDSHVx – 0.45 V
VOL Low-level output voltage, driver enabled, pullup or pulldown disabled IOL = 6 mA 0.45 V
II Input leakage current, Receiver disabled, pullup or pulldown inhibited 8 µA
Input leakage current, Receiver disabled, pullup enabled –161 –100 –52
Input leakage current, Receiver disabled, pulldown enabled 52 100 170
IOZ Total leakage current through the terminal connection of a driver-receiver combination that may include a pullup or pulldown.  The driver output is disabled and the pullup or pulldown is inhibited. 8 µA
All other LVCMOS pins (VDDSHVx = 3.3 V; x = 1 to 6)
VIH High-level input voltage 2 V
VIL Low-level input voltage 0.8 V
VHYS Hysteresis voltage at an input 0.265 0.44 V
VOH High-level output voltage, driver enabled, pullup or pulldown disabled IOH = 6 mA VDDSHVx – 0.45 V
VOL Low-level output voltage, driver enabled, pullup or pulldown disabled IOL = 6 mA 0.45 V
II Input leakage current, Receiver disabled, pullup or pulldown inhibited 18 µA
Input leakage current, Receiver disabled, pullup enabled –243 –100 –19
Input leakage current, Receiver disabled, pulldown enabled 51 110 210
IOZ Total leakage current through the terminal connection of a driver-receiver combination that may include a pullup or pulldown.  The driver output is disabled and the pullup or pulldown is inhibited. 18 µA
  1. The interfaces or signals described in this table correspond to the interfaces or signals available in multiplexing mode 0. All interfaces or signals multiplexed on the terminals described in this table have the same DC electrical characteristics.
  2. The input voltage thresholds for this input are not a function of VDDSHV6.

Thermal Resistance Characteristics for ZCE and ZCZ Packages

Failure to maintain a junction temperature within the range specified in Section 5.5 reduces operating lifetime, reliability, and performance—and may cause irreversible damage to the system. Therefore, the product design cycle should include thermal analysis to verify the maximum operating junction temperature of the device. It is important this thermal analysis is performed using specific system use cases and conditions. TI provides an application report to aid users in overcoming some of the existing challenges of producing a good thermal design. For more information, see AM335x Thermal Considerations.

Table 5-12 provides thermal characteristics for the packages used on this device.

NOTE

Table 5-12 provides simulation data and may not represent actual use-case values.

Table 5-12 Thermal Resistance Characteristics (PBGA Package) [ZCE and ZCZ]

ZCE (°C/W)(1)(2) ZCZ (°C/W)(1)(2) AIR FLOW (m/s)(3)
RΘJC Junction-to-case 10.3 10.2 N/A
RΘJB Junction-to-board 11.6 12.1 N/A
RΘJA Junction-to-free air 24.7 24.2 0
20.5 20.1 1.0
19.7 19.3 2.0
19.2 18.8 3.0
φJT Junction-to-package top 0.4 0.3 0.0
0.6 0.6 1.0
0.7 0.7 2.0
0.9 0.8 3.0
φJB Junction-to-board 11.9 12.7 0.0
11.7 12.3 1.0
11.7 12.3 2.0
11.6 12.2 3.0
These values are based on a JEDEC-defined 2S2P system (with the exception of the theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards:
  • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)
  • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
  • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
  • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
Power dissipation of 2 W and an ambient temperature of 70ºC is assumed.
°C/W = degrees Celsius per watt.
m/s = meters per second.

External Capacitors

To improve module performance, decoupling capacitors are required to suppress the switching noise generated by high frequency and to stabilize the supply voltage. A decoupling capacitor is most effective when it is close to the device, because this minimizes the inductance of the circuit board wiring and interconnects.

Voltage Decoupling Capacitors

Table 5-13 summarizes the Core voltage decoupling characteristics.

Core Voltage Decoupling Capacitors

To improve module performance, decoupling capacitors are required to suppress high-frequency switching noise and to stabilize the supply voltage. A decoupling capacitor is most effective when located close to the AM335x device, because this minimizes the inductance of the circuit board wiring and interconnects.

Table 5-13 Core Voltage Decoupling Characteristics

PARAMETER TYP UNIT
CVDD_CORE(1) 10.08 μF
CVDD_MPU(2)(3) 10.05 μF
  1. The typical value corresponds to one capacitor of 10 μF and eight capacitors of 10 nF.
  2. Not available on the ZCE package. VDD_MPU is merged with VDD_CORE on the ZCE package.
  3. The typical value corresponds to one capacitor of 10 μF and five capacitors of 10 nF.

I/O and Analog Voltage Decoupling Capacitors

Table 5-14 summarizes the power-supply decoupling capacitor recommendations.

Table 5-14 Power-Supply Decoupling Capacitor Characteristics

PARAMETER TYP UNIT
CVDDA_ADC 10 nF
CVDDA1P8V_USB0 10 nF
CCVDDA3P3V_USB0 10 nF
CVDDA1P8V_USB1(1) 10 nF
CVDDA3P3V_USB1(1) 10 nF
CVDDS(2) 10.04 μF
CVDDS_DDR  (3)
CVDDS_OSC 10 nF
CVDDS_PLL_DDR 10 nF
CVDDS_PLL_CORE_LCD 10 nF
CVDDS_SRAM_CORE_BG(4) 10.01 μF
CVDDS_SRAM_MPU_BB(5) 10.01 μF
CVDDS_PLL_MPU 10 nF
CVDDS_RTC 10 nF
CVDDSHV1(6) 10.02 μF
CVDDSHV2(1)(6) 10.02 μF
CVDDSHV3(1)(6) 10.02 μF
CVDDSHV4(6) 10.02 μF
CVDDSHV5(6) 10.02 μF
CVDDSHV6(7) 10.06 μF
  1. Not available on the ZCE package.
  2. Typical values consist of one capacitor of 10 μF and four capacitors of 10 nF.
  3. For more details on decoupling capacitor requirements for the mDDR(LPDDR), DDR2, DDR3, DDR3L memory interface, see Section 7.7.2.1.2.6 and Section 7.7.2.1.2.7 when using mDDR(LPDDR) memory devices, Section 7.7.2.2.2.6 and Section 7.7.2.2.2.7 when using DDR2 memory devices, or Section 7.7.2.3.3.6 and Section 7.7.2.3.3.7 when using DDR3 or DDR3L memory devices.
  4. VDDS_SRAM_CORE_BG supply powers an internal LDO for SRAM supplies. Inrush currents could cause voltage drop on the VDDS_SRAM_CORE_BG supplies when the SRAM LDO is enabled after powering up VDDS_SRAM_CORE_BG terminals. A 10 µF is recommended to be placed close to the terminal and routed with widest traces possible to minimize the voltage drop on VDDS_SRAM_CORE_BG terminals.
  5. VDDS_SRAM_MPU_BB supply powers an internal LDO for SRAM supplies. Inrush currents could cause voltage drop on the VDDS_SRAM_MPU_BB supplies when the SRAM LDO is enabled after powering up VDDS_SRAM_MPU_BB terminals. A 10 µF is recommended to be placed close to the terminal and routed with widest traces possible to minimize the voltage drop on VDDS_SRAM_MPU_BB terminals.
  6. Typical values consist of one capacitor of 10 μF and two capacitors of 10 nF.
  7. Typical values consist of one capacitor of 10 μF and six capacitors of 10 nF.

Output Capacitors

Internal low dropout output (LDO) regulators require external capacitors to stabilize their outputs. These capacitors should be placed as close as possible to the respective terminals of the AM335x device. Table 5-15 summarizes the LDO output capacitor recommendations.

Table 5-15 Output Capacitor Characteristics

PARAMETER TYP UNIT
CCAP_VDD_SRAM_CORE(1) 1 μF
CCAP_VDD_RTC(1)(2) 1 μF
CCAP_VDD_SRAM_MPU(1) 1 μF
CCAP_VBB_MPU(1) 1 μF
  1. LDO regulator outputs should not be used as a power source for any external components.
  2. The CAP_VDD_RTC terminal operates as an input to the RTC core voltage domain when the RTC_KLDO_ENn terminal is high.

Figure 5-1 shows an example of the external capacitors.

AM3359 AM3358 AM3357 AM3356 AM3354 AM3352 AM3351 ext_caps_sprs717.gif
Decoupling capacitors must be placed as closed as possible to the power terminal. Choose the ground closest to the power pin for each decoupling capacitor. In case of interconnecting powers, first insert the decoupling capacitor and then interconnect the powers.
The decoupling capacitor value depends on the characteristics of the board.
Figure 5-1 External Capacitors

Touch Screen Controller and Analog-to-Digital Subsystem Electrical Parameters

The touch screen controller (TSC) and analog-to-digital converter (ADC) subsystem (TSC_ADC) is an 8-channel general-purpose ADC with optional support for interleaving TSC conversions for 4-wire, 5-wire, or 8-wire resistive panels. The TSC_ADC subsystem can be configured for use in one of the following applications:

  • 8 general-purpose ADC channels
  • 4-wire TSC with 4 general-purpose ADC channels
  • 5-wire TSC with 3 general-purpose ADC channels
  • 8-wire TSC.

Table 5-16 summarizes the TSC_ADC subsystem electrical parameters.

Table 5-16 TSC_ADC Electrical Parameters

PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
Analog Input
VREFP(1) (0.5 × VDDA_ADC) + 0.25 VDDA_ADC V
VREFN(1) 0 (0.5 × VDDA_ADC) – 0.25 V
VREFP  + VREFN(1) VDDA_ADC V
Full-scale input range Internal voltage reference 0 VDDA_ADC V
External voltage reference VREFN VREFP
Differential nonlinearity (DNL) Internal voltage reference:
VDDA_ADC = 1.8 V
External voltage reference:
VREFP – VREFN = 1.8 V
–1 0.5 1 LSB
Integral nonlinearity (INL) Source impedance = 50 Ω
Internal voltage reference:
VDDA_ADC = 1.8 V
External voltage reference:
VREFP – VREFN = 1.8 V
–2 ±1 2 LSB
Source impedance = 1 kΩ
Internal voltage reference:
VDDA_ADC = 1.8 V
External voltage reference:
VREFP – VREFN = 1.8 V
±1
Gain error Internal voltage reference:
VDDA_ADC = 1.8 V
External voltage reference:
VREFP – VREFN = 1.8 V
±2 LSB
Offset error Internal voltage reference:
VDDA_ADC = 1.8 V
External voltage reference:
VREFP – VREFN = 1.8 V
±2 LSB
Input sampling capacitance 5.5 pF
Signal-to-noise ratio (SNR) Internal voltage reference:
VDDA_ADC = 1.8 V
External voltage reference:
VREFP – VREFN = 1.8 V
Input signal: 30-kHz sine wave at –0.5-dB full scale
70 dB
Total harmonic distortion (THD) Internal voltage reference:
VDDA_ADC = 1.8 V
External voltage reference:
VREFP – VREFN = 1.8 V
Input signal: 30-kHz sine wave at –0.5-dB full scale
75 dB
Spurious free dynamic range Internal voltage reference:
VDDA_ADC = 1.8 V
External voltage reference:
VREFP – VREFN = 1.8 V
Input signal: 30-kHz sine wave at –0.5-dB full scale
80 dB
Signal-to-noise plus distortion Internal voltage reference:
VDDA_ADC = 1.8 V
External voltage reference:
VREFP – VREFN = 1.8 V
Input signal: 30-kHz sine wave at –0.5-dB full scale
69 dB
VREFP and VREFN input impedance 20
Input impedance of AIN[7:0](2) ƒ = Input frequency [1 / ((65.97 × 10–12) × ƒ)] Ω
Sampling Dynamics
Conversion time 15 ADC clock cycles
Acquisition time 2 ADC clock cycles
Sampling rate ADC clock = 3 MHz 200 kSPS
Channel-to-channel isolation 100 dB
Touch Screen Switch Drivers
Pullup and pulldown switch ON resistance (Ron) 2 Ω
Pullup and pulldown switch current leakage Ileak Source impedance = 500 Ω  0.5 uA
Drive current 25 mA
Touch screen resistance 6
Pen touch detect 2
  1. VREFP  and VREFN must be tied to ground if the internal voltage reference is used.
  2. This parameter is valid when the respective AIN terminal is configured to operate as a general-purpose ADC input.