JAJSSK1 December   2023 AM62P , AM62P-Q1

ADVANCE INFORMATION  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
    1. 3.1 機能ブロック図
  5. Device Comparison
    1. 4.1 Related Products
  6. Terminal Configuration and Functions
    1. 5.1 Pin Diagrams
    2. 5.2 Pin Attributes
      1.      11
      2.      12
    3. 5.3 Signal Descriptions
      1.      14
      2. 5.3.1  CPSW3G
        1. 5.3.1.1 MAIN Domain
          1.        17
          2.        18
          3.        19
          4.        20
      3. 5.3.2  CPTS
        1. 5.3.2.1 MAIN Domain
          1.        23
      4. 5.3.3  CSI-2
        1. 5.3.3.1 MAIN Domain
          1.        26
      5. 5.3.4  DDRSS
        1. 5.3.4.1 MAIN Domain
          1.        29
      6. 5.3.5  DSI
        1. 5.3.5.1 MAIN Domain
          1.        32
      7. 5.3.6  DSS
        1. 5.3.6.1 MAIN Domain
          1.        35
      8. 5.3.7  ECAP
        1. 5.3.7.1 MAIN Domain
          1.        38
          2.        39
          3.        40
      9. 5.3.8  Emulation and Debug
        1. 5.3.8.1 MAIN Domain
          1.        43
        2. 5.3.8.2 MCU Domain
          1.        45
      10. 5.3.9  EPWM
        1. 5.3.9.1 MAIN Domain
          1.        48
          2.        49
          3.        50
          4.        51
      11. 5.3.10 EQEP
        1. 5.3.10.1 MAIN Domain
          1.        54
          2.        55
          3.        56
      12. 5.3.11 GPIO
        1. 5.3.11.1 MAIN Domain
          1.        59
          2.        60
        2. 5.3.11.2 MCU Domain
          1.        62
      13. 5.3.12 GPMC
        1. 5.3.12.1 MAIN Domain
          1.        65
      14. 5.3.13 I2C
        1. 5.3.13.1 MAIN Domain
          1.        68
          2.        69
          3.        70
          4.        71
        2. 5.3.13.2 MCU Domain
          1.        73
        3. 5.3.13.3 WKUP Domain
          1.        75
      15. 5.3.14 MCAN
        1. 5.3.14.1 MAIN Domain
          1.        78
          2.        79
        2. 5.3.14.2 MCU Domain
          1.        81
          2.        82
      16. 5.3.15 MCASP
        1. 5.3.15.1 MAIN Domain
          1.        85
          2.        86
          3.        87
      17. 5.3.16 MCSPI
        1. 5.3.16.1 MAIN Domain
          1.        90
          2.        91
          3.        92
        2. 5.3.16.2 MCU Domain
          1.        94
          2.        95
      18. 5.3.17 MDIO
        1. 5.3.17.1 MAIN Domain
          1.        98
      19. 5.3.18 MMC
        1. 5.3.18.1 MAIN Domain
          1.        101
          2.        102
          3.        103
      20. 5.3.19 OLDI
        1. 5.3.19.1 MAIN Domain
          1.        106
      21. 5.3.20 OSPI
        1. 5.3.20.1 MAIN Domain
          1.        109
      22. 5.3.21 Power Supply
        1.       111
      23. 5.3.22 Reserved
        1.       113
      24. 5.3.23 System and Miscellaneous
        1. 5.3.23.1 Boot Mode Configuration
          1. 5.3.23.1.1 MAIN Domain
            1.         117
        2. 5.3.23.2 Clock
          1. 5.3.23.2.1 MCU Domain
            1.         120
          2. 5.3.23.2.2 WKUP Domain
            1.         122
        3. 5.3.23.3 System
          1. 5.3.23.3.1 MAIN Domain
            1.         125
          2. 5.3.23.3.2 MCU Domain
            1.         127
          3. 5.3.23.3.3 WKUP Domain
            1.         129
        4. 5.3.23.4 VMON
          1.        131
      25. 5.3.24 TIMER
        1. 5.3.24.1 MAIN Domain
          1.        134
        2. 5.3.24.2 MCU Domain
          1.        136
        3. 5.3.24.3 WKUP Domain
          1.        138
      26. 5.3.25 UART
        1. 5.3.25.1 MAIN Domain
          1.        141
          2.        142
          3.        143
          4.        144
          5.        145
          6.        146
          7.        147
        2. 5.3.25.2 MCU Domain
          1.        149
        3. 5.3.25.3 WKUP Domain
          1.        151
      27. 5.3.26 USB
        1. 5.3.26.1 MAIN Domain
          1.        154
          2.        155
    4. 5.4 Pin Connectivity Requirements
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings for Devices which are not AEC - Q100 Qualified
    3. 6.3  ESD Ratings for AEC - Q100 Qualified Devices
    4. 6.4  Power-On Hours (POH)
    5. 6.5  Recommended Operating Conditions
    6. 6.6  Operating Performance Points
    7. 6.7  Power Consumption Summary
    8. 6.8  Electrical Characteristics
      1. 6.8.1  I2C Open-Drain, and Fail-Safe (I2C OD FS) Electrical Characteristics
      2. 6.8.2  Fail-Safe Reset (FS RESET) Electrical Characteristics
      3. 6.8.3  High-Frequency Oscillator (HFOSC) Electrical Characteristics
      4. 6.8.4  Low-Frequency Oscillator (LFXOSC) Electrical Characteristics
      5. 6.8.5  eMMCPHY Electrical Characteristics
      6. 6.8.6  SDIO Electrical Characteristics
      7. 6.8.7  LVCMOS Electrical Characteristics
      8. 6.8.8  OLDI LVDS (OLDI) Electrical Characteristics
      9. 6.8.9  CSI-2 (D-PHY) Electrical Characteristics
      10. 6.8.10 DSI (D-PHY) Electrical Characteristics
      11. 6.8.11 USB2PHY Electrical Characteristics
      12. 6.8.12 DDR Electrical Characteristics
    9. 6.9  VPP Specifications for One-Time Programmable (OTP) eFuses
      1. 6.9.1 Recommended Operating Conditions for OTP eFuse Programming
      2. 6.9.2 Hardware Requirements
      3. 6.9.3 Programming Sequence
      4. 6.9.4 Impact to Your Hardware Warranty
    10. 6.10 Thermal Resistance Characteristics
      1. 6.10.1 Thermal Resistance Characteristics for AMH Package
    11. 6.11 Timing and Switching Characteristics
      1. 6.11.1 Timing Parameters and Information
      2. 6.11.2 Power Supply Requirements
        1. 6.11.2.1 Power Supply Slew Rate Requirement
        2. 6.11.2.2 Power Supply Sequencing
          1. 6.11.2.2.1 Power-Up Sequencing
          2. 6.11.2.2.2 Power-Down Sequencing
          3. 6.11.2.2.3 Partial IO Power Sequencing
      3. 6.11.3 System Timing
        1. 6.11.3.1 Reset Timing
        2. 6.11.3.2 Error Signal Timing
        3. 6.11.3.3 Clock Timing
      4. 6.11.4 Clock Specifications
        1. 6.11.4.1 Input Clocks / Oscillators
          1. 6.11.4.1.1 MCU_OSC0 Internal Oscillator Clock Source
            1. 6.11.4.1.1.1 Load Capacitance
            2. 6.11.4.1.1.2 Shunt Capacitance
          2. 6.11.4.1.2 MCU_OSC0 LVCMOS Digital Clock Source
          3. 6.11.4.1.3 WKUP_LFOSC0 Internal Oscillator Clock Source
          4. 6.11.4.1.4 WKUP_LFOSC0 LVCMOS Digital Clock Source
          5. 6.11.4.1.5 WKUP_LFOSC0 Not Used
        2. 6.11.4.2 Output Clocks
        3. 6.11.4.3 PLLs
        4. 6.11.4.4 Recommended System Precautions for Clock and Control Signal Transitions
      5. 6.11.5 Peripherals
        1. 6.11.5.1  CPSW3G
          1. 6.11.5.1.1 CPSW3G MDIO Timing
          2. 6.11.5.1.2 CPSW3G RMII Timing
          3. 6.11.5.1.3 CPSW3G RGMII Timing
        2. 6.11.5.2  CPTS
        3. 6.11.5.3  CSI-2
        4. 6.11.5.4  DDRSS
        5. 6.11.5.5  DSI
        6. 6.11.5.6  DSS
        7. 6.11.5.7  ECAP
        8. 6.11.5.8  Emulation and Debug
          1. 6.11.5.8.1 Trace
          2. 6.11.5.8.2 JTAG
        9. 6.11.5.9  EPWM
        10. 6.11.5.10 EQEP
        11. 6.11.5.11 GPIO
        12. 6.11.5.12 GPMC
          1. 6.11.5.12.1 GPMC and NOR Flash — Synchronous Mode
          2. 6.11.5.12.2 GPMC and NOR Flash — Asynchronous Mode
          3. 6.11.5.12.3 GPMC and NAND Flash — Asynchronous Mode
        13. 6.11.5.13 I2C
        14. 6.11.5.14 MCAN
        15. 6.11.5.15 MCASP
        16. 6.11.5.16 MCSPI
          1. 6.11.5.16.1 MCSPI — Controller Mode
          2. 6.11.5.16.2 MCSPI — Peripheral Mode
        17. 6.11.5.17 MMCSD
          1. 6.11.5.17.1 MMC0 - eMMC Interface
            1. 6.11.5.17.1.1 Legacy SDR Mode
            2. 6.11.5.17.1.2 High Speed SDR Mode
            3. 6.11.5.17.1.3 High Speed DDR Mode
            4. 6.11.5.17.1.4 HS200 Mode
            5. 6.11.5.17.1.5 HS400 Mode
          2. 6.11.5.17.2 MMC1/MMC2 - SD/SDIO Interface
            1. 6.11.5.17.2.1 Default Speed Mode
            2. 6.11.5.17.2.2 High Speed Mode
            3. 6.11.5.17.2.3 UHS–I SDR12 Mode
            4. 6.11.5.17.2.4 UHS–I SDR25 Mode
            5. 6.11.5.17.2.5 UHS–I SDR50 Mode
            6. 6.11.5.17.2.6 UHS–I DDR50 Mode
            7. 6.11.5.17.2.7 UHS–I SDR104 Mode
        18. 6.11.5.18 OLDI
          1. 6.11.5.18.1 OLDI0 Switching Characteristics
        19. 6.11.5.19 OSPI
          1. 6.11.5.19.1 OSPI0 PHY Mode
            1. 6.11.5.19.1.1 OSPI0 With PHY Data Training
            2. 6.11.5.19.1.2 OSPI0 Without Data Training
              1. 6.11.5.19.1.2.1 OSPI0 PHY SDR Timing
              2. 6.11.5.19.1.2.2 OSPI0 PHY DDR Timing
          2. 6.11.5.19.2 OSPI0 Tap Mode
            1. 6.11.5.19.2.1 OSPI0 Tap SDR Timing
            2. 6.11.5.19.2.2 OSPI0 Tap DDR Timing
        20. 6.11.5.20 Timers
        21. 6.11.5.21 UART
        22. 6.11.5.22 USB
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Processor Subsystems
      1. 7.2.1 Arm Cortex-A53 Subsystem
      2. 7.2.2 Device/Power Manager
      3. 7.2.3 MCU Arm Cortex-R5F Subsystem
    3. 7.3 Accelerators and Coprocessors
    4. 7.4 Other Subsystems
      1. 7.4.1 Dual Clock Comparator (DCC)
      2. 7.4.2 Data Movement Subsystem (DMSS)
      3. 7.4.3 Memory Cyclic Redundancy Check (MCRC)
      4. 7.4.4 Peripheral DMA Controller (PDMA)
      5. 7.4.5 Real-Time Clock (RTC)
    5. 7.5 Peripherals
      1. 7.5.1  Gigabit Ethernet Switch (CPSW3G)
      2. 7.5.2  Camera Serial Interface Receiver (CSI_RX_IF)
      3. 7.5.3  Display Subsystem (DSS)
      4. 7.5.4  Enhanced Capture (ECAP)
      5. 7.5.5  Error Location Module (ELM)
      6. 7.5.6  Enhanced Pulse Width Modulation (EPWM)
      7. 7.5.7  Error Signaling Module (ESM)
      8. 7.5.8  Enhanced Quadrature Encoder Pulse (EQEP)
      9. 7.5.9  General-Purpose Interface (GPIO)
      10. 7.5.10 General-Purpose Memory Controller (GPMC)
      11. 7.5.11 Global Timebase Counter (GTC)
      12. 7.5.12 Inter-Integrated Circuit (I2C)
      13. 7.5.13 Modular Controller Area Network (MCAN)
      14. 7.5.14 Multichannel Audio Serial Port (MCASP)
      15. 7.5.15 Multichannel Serial Peripheral Interface (MCSPI)
      16. 7.5.16 Multi-Media Card Secure Digital (MMCSD)
      17. 7.5.17 Octal Serial Peripheral Interface (OSPI)
      18. 7.5.18 Timers
      19. 7.5.19 Universal Asynchronous Receiver/Transmitter (UART)
      20. 7.5.20 Universal Serial Bus Subsystem (USBSS)
  9. Applications, Implementation, and Layout
    1. 8.1 Device Connection and Layout Fundamentals
      1. 8.1.1 Power Supply
        1. 8.1.1.1 Power Supply Designs
        2. 8.1.1.2 Power Distribution Network Implementation Guidance
      2. 8.1.2 External Oscillator
      3. 8.1.3 JTAG, EMU, and TRACE
      4. 8.1.4 Unused Pins
    2. 8.2 Peripheral- and Interface-Specific Design Information
      1. 8.2.1 DDR Board Design and Layout Guidelines
      2. 8.2.2 OSPI/QSPI/SPI Board Design and Layout Guidelines
        1. 8.2.2.1 No Loopback, Internal PHY Loopback, and Internal Pad Loopback
        2. 8.2.2.2 External Board Loopback
        3. 8.2.2.3 DQS (only available in Octal SPI devices)
      3. 8.2.3 USB VBUS Design Guidelines
      4. 8.2.4 System Power Supply Monitor Design Guidelines
      5. 8.2.5 High Speed Differential Signal Routing Guidance
      6. 8.2.6 Thermal Solution Guidance
    3. 8.3 Clock Routing Guidelines
      1. 8.3.1 Oscillator Routing
  10. Device and Documentation Support
    1. 9.1 Device Nomenclature
      1. 9.1.1 Standard Package Symbolization
      2. 9.1.2 Device Naming Convention
    2. 9.2 Tools and Software
    3. 9.3 Documentation Support
    4. 9.4 サポート・リソース
    5. 9.5 Trademarks
    6. 9.6 静電気放電に関する注意事項
    7. 9.7 用語集
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Packaging Information

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • AMH|466
サーマルパッド・メカニカル・データ
発注情報

System Power Supply Monitor Design Guidelines

The VMON_VSYS pin provides a way to monitor a system power supply. This system power supply is typically a single pre-regulated power source for the entire system and can be connected to the VMON_VSYS pin via and external resistor divider circuit. This system supply is monitored by comparing the external voltage divider output voltage to an internal voltage reference, where a power fail event is triggered when the voltage applied to VMON_VSYS drops below the internal reference voltage. The actual system power supply voltage trip point is determined by the system designer when selecting component values used to implement the external resistor voltage divider circuit.

When designing the resistor divider circuit the designer must understand various factors which contribute to variability in the system power supply monitor trip point. The first thing to consider is the initial accuracy of the VMON_VSYS input threshold which has a nominal value of 0.45 V, with a variation of ±3%. Precision 1% resistors with similar thermal coefficient are recommended for implementing the resistor voltage divider. This minimizes variability contributed by resistor value tolerances. Input leakage current associated with VMON_VSYS must also be considered since any current flowing into the pin creates a loading error on the voltage divider output. The VMON_VSYS input leakage current can be in the range of 10 nA to 2.5 µA when applying 0.45 V.

Note:

The resistor voltage divider shall be designed such that the output voltage never exceeds the maximum value defined in the Recommended Operating Conditions section, during normal operating conditions.

Figure 8-5 presents an example, where the system power supply is nominally 5 V and the maximum trigger threshold is 5 V - 10%, or 4.5 V.

For this example, the designer must understand which variables effect the maximum trigger threshold when selecting resistor values. A device which has a VMON_VSYS input threshold of 0.45 V + 3% needs to be considered when trying to design a voltage divider that doesn’t trip until the system supply drops 10%. The effect of resistor tolerance and input leakage also needs to be considered, but the contribution to the maximum trigger point is not obvious. When selecting component values which produce a maximum trigger voltage, the system designer must consider a condition where the value of R1 is 1% low and the value of R2 is 1% high combined with a condition where input leakage current for the VMON_VSYS pin is 2.5 µA. When implementing a resistor divider where R1 = 4.81 KΩ and R2 = 40.2 KΩ, the result is a maximum trigger threshold of 4.517 V.

Once component values have been selected to satisfy the maximum trigger voltage as described above, the system designer can determine the minimum trigger voltage by calculating the applied voltage that produces an output voltage of 0.45 V - 3% when the value of R1 is 1% high and the value of R2 is 1% low, and the input leakage current is 10 nA, or zero. Using an input leakage of zero with the resistor values given above, the result is a minimum trigger threshold of 4.013 V.

This example demonstrates a system power supply voltage trip point that ranges from 4.013 V to 4.517 V. Approximately 250 mV of this range is introduced by VMON_VSYS input threshold accuracy of ±3%, approximately 150 mV of this range is introduced by resistor tolerance of ±1%, and approximately 100 mV of this range is introduced by loading error when VMON_VSYS input leakage current is 2.5 µA.

The resistor values selected in this example produces approximately 100 µA of bias current through the resistor divider when the system supply is 4.5 V. The 100 mV of loading error mentioned above can be reduced to about 10 mV by increasing the bias current through the resistor divider to approximately 1 mA. So resistor divider bias current vs loading error is something the system designer needs to consider when selecting component values.

The system designer must also consider implementing a noise filter on the voltage divider output since VMON_VSYS has minimum hysteresis and a high-bandwidth response to transients. This can be done by installing a capacitor across R1 as shown in Figure 8-5. However, the system designer must determine the response time of this filter based on system supply noise and expected response to transient events.

GUID-04102B71-40CB-44F1-8A58-49A5ED8CD00E-low.gifFigure 8-5 System Supply Monitor Voltage Divider Circuit

VMON_1P8_SOC pin provides a way to monitor external 1.8 V power supplies. This pin must be connected directly to their respective power source. An internal resistor divider with software control is implemented inside the SoC for each of these pins. Software can program each internal resistor divider to create appropriate under voltage and over voltage interrupts.

VMON_3P3_SOC pin provides a way to monitor external 3.3 V power supplies. This pin must be connected directly to their respective power source. An internal resistor divider with software control is implemented inside the SoC for each of these pins. Software can program each internal resistor divider to create appropriate under voltage and over voltage interrupts.