SLUS784E December   2007  – December 2015

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Options
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Dissipation Ratings
    8. 7.8 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Control Logic Overview
      2. 8.3.2  Temperature Qualification (Applies Only to Versions With TS Pin Option)
      3. 8.3.3  Input Overvoltage Detection, Power Good Status Output
      4. 8.3.4  Charge Status Outputs
      5. 8.3.5  Battery Charging: Constant Current Phase
      6. 8.3.6  Charge Current Translator
      7. 8.3.7  Battery Voltage Regulation
      8. 8.3.8  Pre-Charge Timer
      9. 8.3.9  Thermal Protection Loop
      10. 8.3.10 Thermal Shutdown And Protection
      11. 8.3.11 Dynamic Timer Function
      12. 8.3.12 Charge Termination Detection and Recharge
      13. 8.3.13 Battery Absent Detection - Voltage Mode Algorithm
      14. 8.3.14 Charge Safety Timer
      15. 8.3.15 Short-Circuit Protection
      16. 8.3.16 Startup With Deeply Depleted Battery Connected
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power Down
      2. 8.4.2 Sleep Mode
      3. 8.4.3 Overvoltage Lockout
      4. 8.4.4 Stand-By Mode
      5. 8.4.5 Begin Charge Mode
      6. 8.4.6 Charging Mode
      7. 8.4.7 Suspend Mode
      8. 8.4.8 LDO Mode Operation
      9. 8.4.9 State Machine Diagram
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 bq24086 and bq24088 Typical Application
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Selecting Input and Output Capacitor
          2. 9.2.1.2.2 Using Adapters With Large Output Voltage Ripple
          3. 9.2.1.2.3 Calculations
        3. 9.2.1.3 Application Curves
      2. 9.2.2 bq24085 Typical Application
        1. 9.2.2.1 Design Requirements
      3. 9.2.3 bq24087 Typical Application
        1. 9.2.3.1 Design Requirements
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 Thermal Considerations
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Related Links
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • DRC|10
サーマルパッド・メカニカル・データ
発注情報

7 Specifications

7.1 Absolute Maximum Ratings(1)

MIN MAX UNIT
Supply voltage (IN with respect to Vss) –0.3 20 V(2)
Input voltage on IN, STATx, PG, TS, CE, TMR (all with respect to Vss) –0.3 V(IN) V
Input voltage on OUT, BAT, ISET (all with respect to Vss) –0.3 7 V
Output sink current (STATx) + PG 15 mA
Output current (OUT pin) 2 A
TA Operating free-air temperature –40 155 °C
TJ Junction temperature –40 150 °C
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.
(2) The bq24085/6/7/8 family can withstand up to 18 V maximum continuously, 20 V for maximum of 2000 hours and 26 V for a maximum for 87 hours.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±3000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

MIN MAX UNIT
V(IN) Supply voltage Battery absent detection not functional 3.5 4.35 V
V(IN) Supply voltage Battery absent detection functional 4.35 6.5 V
R(TMR) Safety timer program resistor 33 100
TJ Junction temperature 0 125 °C

7.4 Thermal Information

THERMAL METRIC(1) bq2408x UNIT
DRC (VSON)
10 PINS
RθJA Junction-to-ambient thermal resistance 46.7 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 65.9 °C/W
RθJB Junction-to-board thermal resistance 21.3 °C/W
ψJT Junction-to-top characterization parameter 1.6 °C/W
ψJB Junction-to-board characterization parameter 21.4 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 3.6 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

over recommended operating range, TJ = 0 –125°C range, See the Application and Implementation section, typical values at TJ = 25°C (unless otherwise noted), RTMR = 49.9 KΩ
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
POWER DOWN THRESHOLD – UNDERVOLTAGE LOCKOUT
VUVLO Power down threshold V(IN) = 0 V, increase V(OUT): 0 → 3 V OR
V(OUT) = 0 V, increase V(IN): 0 → 3 V,
CE = LO (1)
1.5 3 V
INPUT POWER DETECTION(2)
VIN(DT) Input power detection threshold V(IN) detected at [V(IN) – V(OUT)] > VIN(DT) 130 mV
VHYS(INDT) Input power detection hysteresis Input power not detected at
[V(IN) – V(OUT)] < [VIN(DT) – VHYS(INDT)]
30 mV
INPUT OVERVOLTAGE PROTECTION
V(OVP) Input overvoltage detection threshold V(IN) increasing bq24088 10.2 10.5 11.7 V
bq24085/6/7 6.2 6.5 7
VHYS(OVP) Input overvoltage hysteresis V(IN) decreasing bq24088 0.5 V
bq24085/6/7 0.2
QUIESCENT CURRENT
ICC(CHGOFF) IN pin quiescent current, charger off Input power detected,
CE = HI
V(IN) = 6 V 100 200 μA
V(IN) = 16.5 V 350
ICC(CHGON) IN pin quiescent current, charger on Input power detected, CE = LO, VBAT = 4.5 V 4 6 mA
IBAT(DONE) Battery leakage current after termination into IC Input power detected, charge terminated,
CE = LO
1 5 μA
IBAT(CHGOFF) Battery leakage current into IC, charger off Input power detected, CE = HI OR
input power not detected, CE = LO
1 5 μA
TS PIN COMPARATOR
V(TS1) Lower voltage temperature threshold Hot detected at V(TS) < V(TS1); NTC thermistor 29 30 31 %V(IN)
V(TS2) Upper voltage temperature threshold Cold detected at V(TS) > V(TS2); NTC thermistor 60 61 62 %V(IN)
VHYS(TS) Hysteresis Temp OK at V(TS) > [ V(TS1) + VHYS(TS) ] OR
V(TS) < [ V(TS2) – VHYS(TS) ]
2 %V(IN)
CE INPUT
VIL Input (low) voltage V(/CE) 0 1 V
VIH Input (high) voltage V(/CE) 2 V
STAT1, STAT2 AND PG OUTPUTS(3)
VOL Output (low) saturation voltage Iout = 1 mA (sink) 200 mV
THERMAL SHUTDOWN
T(SHUT) Temperature trip Junction temperature, temp rising 155 °C
T(SHUTHYS) Thermal hysteresis Junction temperature 20 °C
VOLTAGE REGULATION(4)
VO(REG) Output voltage 4.20 V
VO(TOL) Voltage regulation accuracy TA = 25°C –0.5% 0.5%
–1% 1%
V(DO) Dropout voltage, V(IN) – V(OUT) I(OUT) = 750 mA 600 mV
CURRENT REGULATION(5)
IO(OUT) Output current range V(BAT) > V(LOWV), IO(OUT) = I(OUT) = K(SET) × V(SET)/R(SET) 50 750 mA
V(SET) Output current set voltage V(ISET) = V(SET), V(LOWV) < V(BAT) ≤ VO(REG) 2.45 2.5 2.55 V
K(SET) Output current set factor 100 mA ≤ IO(OUT) ≤ 750 mA 175 182 190
10 mA ≤ IO(OUT) < 100 mA 180 215 250
RISET External resistor range Resistor connected to ISET pin 0.6 10
PRECHARGE AND OUTPUT SHORT-CIRCUIT CURRENT REGULATION(6)
V(LOWV) Precharge to fast-charge transition threshold V(BAT) increasing 2.8 2.95 3.15 V
V(SC) Precharge to short-circuit transition threshold V(BAT) decreasing 1.2 1.4 1.6 V
V(SCIND) Short-circuit indication V(BAT) decreasing 1.6 1.8 2
IO(PRECHG) Precharge current range V(SC) < VI(BAT) < V(LOWV), t < t(PRECHG)
IO(PRECHG) = K(SET) × V(PRECHG)/R(ISET)
5 75 mA
V(PRECHG) Precharge set voltage V(ISET) = V(PRECHG), V(SC) < VI(BAT) < V(LOWV),
t < t(PRECHG)
225 250 280 mV
IO(SHORT) Output shorted regulation current VSS ≤ V(BAT) ≤ V(SCI),
IO(SHORT) = I(OUT), V(BAT)= VSS, Internal pullup resistor,
TJ = 25°C
VPOR < VIN < 6.0 V 7 15 24 mA
6.0 V < VIN < VOVP 15
TEMPERATURE REGULATION (Thermal regulation™)(7)
TJ(REG) Temperature regulation limit V(IN) = 5.5 V, V(BAT) = 3.2 V, Fast charge current set to 1 A 101 112 125 °C
I(MIN_TJ(REG)) Minimum current in thermal regulation V(LOWV) < V(BAT) < VO(REG),
0.7 kΩ < R(ISET) < 1.18 kΩ
105 125 mA
CHARGE TERMINATION DETECTION(9)
I(TERM) Termination detection current range V(BAT) > V(RCH), I(TERM) = K(SET) × V(TERM)/R(ISET) 5 75 mA
V(TERM) Charge termination detection set voltage(8) V(BAT) > V(RCH) 225 250 275 mV
BATTERY RECHARGE THRESHOLD
V(RCH) Recharge threshold detection [VO(REG)–V(BAT) ] > V(RCH) 75 100 135 mV
TIMERS(10)
VTMR(OFF) Charge timer and termination enable threshold Charge timer AND termination disabled at: V(TMR) > VTMR(OFF) bq24085/86/88 2.5 3 3.5 V
Charge timer enable threshold Charge timer disabled at:
V(TMR) > VTMR(OFF)
bq24087
BATTERY DETECTION THRESHOLDS
IDET(DOWN) Battery detection current (sink) 2 V < V(BAT) < VO(REG) 1 2 3.2 mA
IDET(UP) Battery detection current (source) 2 V < V(BAT) < VO(REG) IO(PRECHG) mA
TIMER FAULT RECOVERY
I(FAULT) Fault Current (source) V(OUT) < V(RCH) 0.8 1.1 mA
OUTPUT CURRENT SAFETY LIMIT(11)
I(SETSC) Charge overcurrent safety V(ISET) = VSS 1.5 A
(1) Specified by design, not production tested.
(2) CE = HI or LOW, V(IN) > 3.5 V
(3) V(IN) ≥ VO(REG) + V(DO-MAX)
(4) V(IN) ≥ VO(REG) + V(DO-MAX), I(TERM) < I(OUT) < IO(OUT), charger enabled, no fault conditions detected.
(5) V(IN) > V(OUT) > V(DO-MAX), charger enabled, no fault conditions detected.
(6) V(IN)–V(OUT) > V(DO-MAX) , V(IN) ≥ 4.5 V, charger enabled, no fault conditions detected, RTMR = 50 K or V(TMR)=OPEN; thermal regulation loop not active.
(7) Charger enabled, no fault conditions detected.
(8) The voltage on the ISET pin is compared to the V(TERM) voltage to determine when the termination should occur.
(9) VO(REG) = 4.2 V, charger enabled, no fault conditions detected, thermal regulation loop not active, RTMR = 50 K or TMR pin open.
(10) CE = LO, charger enabled, no fault conditions detected, V(TMR) < 3 V, timers enabled.
(11) V(IN) ≥ 4.5 V, charger enabled, ISET shorted to GND.

7.6 Timing Requirements

over recommended operating range, TJ = 0 –125°C range, See the Application and Implementation section, typical values at TJ = 25°C (unless otherwise noted), RTMR = 49.9 KΩ
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
POWER DOWN THRESHOLD – UNDERVOLTAGE LOCKOUT
tDGL(PG) Deglitch time on power good V(IN) = 0 V → 5 V in 1 μs to
PG:HI → LO
2 ms
INPUT POWER DETECTION(1)
tDGL(NOIN) Delay time, input power not detected status(2) PG: LO →HI after tDGL(NOIN) 10 μs
tDLY(CHGOFF) Charger off delay Charger turned off after tDLY(CHGOFF), Measured from PG: LO → HI; Timer reset after tDLY(CHGOFF) 25 ms
INPUT OVERVOLTAGE PROTECTION
tDGL(OVDET) Input overvoltage detection delay CE = HI or LO, Measured from V(IN) > V(OVP) to
PG: LO → HI; VIN increasing
100 μs
tDGL(OVNDET) Input overvoltage not detected delay(2) CE = HI or LO, Measured from V(IN) < V(OVP)
to PG: HI → LO; V(IN) decreasing
100 μs
VOLTAGE AND CURRENT REGULATION TIMING(3)
tPWRUP(CHG) Input power detection to full charge current time delay Measured from PG:HI → LO to I(OUT) > 100 mA,
CE = LO, IO(OUT) = 750 mA, V(BAT) = 3.5 V
25 ms
tPWRUP(EN) Charge enable to full charge current delay Measured from CE:HI → LO to I(OUT) >100 mA, IO(OUT) = 750 mA, V(BAT)= 3.5 V, V(IN) = 4.5 V, Input power detected 25 ms
tPWRUP(LDO) Input power detection to voltage regulation delay, LDO mode set, no battery or load connected Measured from PG:HI → LO to V(OUT) > 90% of charge voltage regulation;
V(TMR) = OPEN, LDO mode set, no battery and no load at OUT pin, CE = LO
25 ms
CHARGE TERMINATION DETECTION(4)
tDGL(TERM) Deglitch time, termination detected V(ISET) decreasing 50 ms
BATTERY RECHARGE THRESHOLD
tDGL(RCH) Deglitch time, recharge detection V(BAT) decreasing 350 ms
TIMERS(5)
t(CHG) Charge safety timer range t(CHG) = K(CHG) × RTMR ; thermal loop not active 3 10 hours
K(CHG) Charge safety timer constant V(BAT) > V(LOWV) 0.08 0.1 0.12 hr/kΩ
t(PCHG) Pre-charge safety timer range t(PCHG) = K(PCHG) × t(CHG) ; Thermal regulation loop not active 1080 3600 s
K(PCHG) Pre-charge safety timer constant V(BAT) < V(LOWV) 0.08 0.1 0.12
BATTERY DETECTION THRESHOLDS
t(DETECT) Battery detection time 2 V < V(BAT) < VO(REG), Thermal regulation loop not active; RTMR = 50 kΩ, IDET(down) or IDET (UP) 125 ms
(1) CE = HI or LOW, V(IN) > 3.5 V
(2) Specified by design, not production tested.
(3) V(IN) > V(OUT) + V(DO-MAX), charger enabled, no fault conditions detected, RTMR = 50 K or V(TMR) = OPEN; thermal regulation loop not active.
(4) VO(REG) = 4.2 V, charger enabled, no fault conditions detected, thermal regulation loop not active, RTMR = 50 K or TMR pin open.
(5) CE = LO, charger enabled, no fault conditions detected, V(TMR) < 3 V, timers enabled.

7.7 Dissipation Ratings(1)

PACKAGE θJC (°C/W) θJA (°C/W)
10-pin DRC 3.21 46.87
(1) This data is based on using the JEDEC High-K board and the exposed die pad is connected to a copper pad on the board. This is connected to the ground plane by a 2×3 via matrix.

7.8 Typical Characteristics

Measured using the typical application circuit shown previously.
bq24085 bq24086 bq24087 bq24088 therm_lp_lus784.gif
Figure 1. Thermal Regulation
bq24085 bq24086 bq24087 bq24088 pc_cur_bat_lus784.gif
Figure 3. Pre-Charge Current vs Battery Voltage
bq24085 bq24086 bq24087 bq24088 kset_lin1_lus784.gif
Figure 5. KSET Linearity vs Fast-Charge Current
bq24085 bq24086 bq24087 bq24088 vdo_ta_lus784.gif
Figure 7. Dropout Voltage vs Temperature
bq24085 bq24086 bq24087 bq24088 tloop_dtc_lus784.gif
Figure 2. DTC Operation
bq24085 bq24086 bq24087 bq24088 fc_cur_bat_lus784.gif
Figure 4. Fast-Charge Current vs Battery Voltage
bq24085 bq24086 bq24087 bq24088 kset_lin2_lus784.gif
Figure 6. KSET Linearity vs Pre-Charge Current