SLUS688H March   2006  – November 2015

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Options
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Dissipation Ratings
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  PWM Controller
      2. 8.3.2  Temperature Qualification
      3. 8.3.3  Battery Preconditioning (Precharge)
      4. 8.3.4  Battery Charge Current
      5. 8.3.5  Battery Voltage Regulation
      6. 8.3.6  Charge Termination And Recharge
      7. 8.3.7  Sleep Mode
      8. 8.3.8  Charge Status Outputs
      9. 8.3.9  PG Output
      10. 8.3.10 CE Input (Charge Enable)
      11. 8.3.11 Timer Fault Recovery
      12. 8.3.12 Output Overvoltage Protection (Applies to All Versions)
      13. 8.3.13 Battery Detection
        1. 8.3.13.1 Battery Detection Example
      14. 8.3.14 Current Sense Amplifier
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Inductor, Capacitor, and Sense Resistor Selection Guidelines
      3. 9.2.3 Application Curves
    3. 9.3 System Examples
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 Thermal Considerations
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Related Links
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

7 Specifications

7.1 Absolute Maximum Ratings (1)

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Supply voltage (with respect to VSS) IN, VCC 20 V
Input voltage (with respect to VSS and PGND) STAT1, STAT2, PG, CE, CELLS, SNS, BAT –0.3 20 V
OUT –0.7 20 V
TS, TTC 7 V
VTSB 3.6 V
ISET1, ISET2 3.3 V
Voltage difference between SNS and BAT inputs (VSNS - VBAT) ±1 V
Output sink STAT1, STAT2, PG 10 mA
Output current (average) OUT 2.2 A
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds 300 °C
TA Operating free-air temperature –40 85 °C
TJ Junction temperature –40 125 °C
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

MIN NOM MAX UNIT
Supply voltage, VCC and IN (Tie together) 4.35 (1) 16.0 (2) V
Operating junction temperature range, TJ –40 125 °C
(1) The IC continues to operate below Vmin, to 3.5 V, but these conditions are not tested, and are not specified.
(2) The inherent switching noise voltage spikes should not exceed the absolute maximum rating on either the IN or OUT pins. A tight layout minimizes switching noise.

7.4 Thermal Information

THERMAL METRIC (1) bq2412x UNIT
RHL (VQFN)
20 PINS
RθJA Junction-to-ambient thermal resistance 39.2 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 39.3 °C/W
RθJB Junction-to-board thermal resistance 15.8 °C/W
ψJT Junction-to-top characterization parameter 0.6 °C/W
ψJB Junction-to-board characterization parameter 15.8 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 3.6 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

TJ = 0°C to 125°C and recommended supply voltage range (unless otherwise stated)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
INPUT CURRENTS
IVCC(VCC) VCC supply current VCC > VCC(min), PWM switching 10 mA
VCC > VCC(min), PWM NOT switching 5
VCC > VCC(min), CE = HIGH 315 μA
I(SLP) Battery discharge sleep current, (SNS, BAT, OUT pins) 0°C ≤ TJ ≤ 65°C, VI(BAT) = 4.2 V,
VCC < V(SLP) or VCC > V(SLP) but not in charge
3.5 μA
0°C ≤ TJ ≤ 65°C, VI(BAT) = 8.4 V,
VCC < V(SLP) or VCC > V(SLP) but not in charge
5.5
0°C ≤ TJ ≤ 65°C, VI(BAT) = 12.6 V,
VCC < V(SLP) or VCC > V(SLP) but not in charge
7.7
VOLTAGE REGULATION
VOREG Output voltage, bq24123 CELLS = Low, in voltage regulation 4.2 V
CELLS = High, in voltage regulation 8.4
Output voltage, bq24120 Operating in voltage regulation 4.2
VIBAT Feedback regulation REF for bq24125 only (W/FB) IIBAT = 25 nA typical into pin 2.1
Voltage regulation accuracy TA = 25°C –0.5% 0.5%
–1% 1%
CURRENT REGULATION - FAST CHARGE
IOCHARGE Output current range of converter VLOWV ≤ VI(BAT) < VOREG,
V(VCC) - VI(BAT) > V(DO-MAX)
150 2000 mA
VIREG Voltage regulated across R(SNS) Accuracy 100 mV ≤ VIREG≤ 200 mV, (1) –10% 10%
bq24120 bq24123 bq24125 q_cell_lus606.gif
Programmed Where
5 kΩ ≤ RSET1 ≤ 10 kΩ, Select RSET1 to program VIREG,
VIREG(measured) = IOCHARGE ×RSNS
(–10% to 10% excludes errors due to RSET1 and R(SNS) tolerances)
V(ISET1) Output current set voltage V(LOWV) ≤ VI(BAT) ≤ VO(REG),
V(VCC) ≥ VI(BAT) + V (DO-MAX)
1 V
K(ISET1) Output current set factor VLOWV ≤ VI(BAT) < VO(REG) ,
V(VCC) ≥ VI(BAT) + V(DO-MAX)
1000 V/A
PRECHARGE AND SHORT-CIRCUIT CURRENT REGULATION
VLOWV Precharge to fast-charge transition voltage threshold, BAT 68 71.4 75 %VO(REG)
t Deglitch time for precharge to fast charge transition Rising voltage;
tRISE, tFALL = 100 ns, 2-mV overdrive
20 30 40 ms
IOPRECHG Precharge range VI(BAT) < VLOWV, t < tPRECHG 15 200 mA
V(ISET2) Precharge set voltage, ISET2 VI(BAT) < VLOWV, t < tPRECHG 100 mV
K(ISET2) Precharge current set factor 1000 V/A
VIREG-PRE Voltage regulated across RSNS-Accuracy 10 mV ≤ VIREG-PRE ≤ 100 mV, (1) –20% 20%
bq24120 bq24123 bq24125 q_cell1_lus606.gif
Where
1.0 kΩ ≤ RSET2 ≤ 10 kΩ, Select RSET2
to program VIREG-PRE,
VIREG-PRE (Measured) = IOPRE-CHG × RSNS
(–20% to 20% excludes errors due to RSET2 and RSNS tolerances)
CHARGE TERMINATION (CURRENT TAPER) DETECTION
ITERM Charge current termination detection range VI(BAT) > VOREG- VRCH 15 200 mA
VTERM Charge termination detection set voltage, ISET2 VI(BAT) > VOREG- VRCH 100 mV
K(ISET2) Termination current set factor 1000 V/A
Charger termination accuracy VI(BAT) > VOREG- VRCH –20% 20%
tdg-TERM Deglitch time for charge termination Both rising and falling,
2-mV overdrive tRISE, tFALL = 100 ns
20 30 40 ms
TEMPERATURE COMPARATOR AND VTSB BIAS REGULATOR
%LTF Cold temperature threshold, TS, % of bias VLTF = VO(VTSB) × % LTF/100 72.8% 73.5% 74.2%
%HTF Hot temperature threshold, TS, % of bias VHTF = VO(VTSB) × % HTF/100 33.7% 34.4% 35.1%
%TCO Cutoff temperature threshold, TS, % of bias VTCO = VO(VTSB) × % TCO/100 28.7% 29.3% 29.9%
LTF hysteresis 0.5% 1.0% 1.5%
tdg-TS Deglitch time for temperature fault, TS Both rising and falling,
2-mV overdrive tRISE, tFALL = 100 ns
20 30 40 ms
VO(VTSB) TS bias output voltage VCC > VIN(min),
I(VTSB) = 10 mA 0.1 μF ≤ CO(VTSB) ≤ 1 μF
3.15 V
VO(VTSB) TS bias voltage regulation accuracy VCC > IN(min),
I(VTSB) = 10 mA 0.1 μF ≤ CO(VTSB) ≤ 1 μF
–10% 10%
BATTERY RECHARGE THRESHOLD
VRCH Recharge threshold voltage Below VOREG 75 100 125 mV/cell
tdg-RCH Deglitch time VI(BAT) < decreasing below threshold,
tFALL = 100 ns 10-mV overdrive
20 30 40 ms
STAT1, STAT2, AND PG OUTPUTS
VOL(STATx) Low-level output saturation voltage, STATx IO = 5 mA 0.5 V
VOL(PG) Low-level output saturation voltage, PG IO = 10 mA 0.1
CE , CELLS INPUTS
VIL Low-level input voltage IIL = 5 μA 0 0.4 V
VIH High-level input voltage IIH = 20 μA 1.3 VCC
TTC INPUT
tPRECHG Precharge timer 1440 1800 2160 s
tCHARGE Programmable charge timer range t(CHG) = C(TTC) × K(TTC) 25 572 minutes
Charge timer accuracy 0.01 μF ≤ C(TTC) ≤ 0.18 μF -10% 10%
KTTC Timer multiplier 2.6 min/nF
CTTC Charge time capacitor range 0.01 0.22 μF
VTTC_EN TTC enable threshold voltage V(TTC) rising 200 mV
SLEEP COMPARATOR
VSLP-ENT Sleep-mode entry threshold 2.3 V ≤ VI(OUT) ≤ VOREG, for 1 or 2 cells VCC ≤ VIBAT +5 mV VCC ≤ VIBAT +75 mV V
VI(OUT) = 12.6 V, RIN = 1kΩ,
bq24125 (2)
VCC ≤ VIBAT –4 mV VCC ≤ VIBAT +73 mV
VSLP-EXIT Sleep-mode exit hysteresis, 2.3 V ≤ VI(OUT)≤ VOREG 40 160 mV
tdg-SLP Deglitch time for sleep mode VCC decreasing below threshold,
tFALL = 100 ns, 10-mV overdrive,
PMOS turns off
5 μs
VCC decreasing below threshold,
tFALL = 100 ns, 10-mV overdrive,
STATx pins turn off
20 30 40 ms
UVLO
VUVLO-ON IC active threshold voltage VCC rising 3.15 3.30 3.50 V
IC active hysteresis VCC falling 120 150 mV
PWM
Internal P-channel MOSFET on-resistance 7 V ≤ VCC ≤ VCC(max) 400
4.5 V ≤ VCC  ≤ 7 V 500
Internal N-channel MOSFET on-resistance 7 V ≤ VCC  ≤ VCC(max) 130
4.5 V ≤ VCC  ≤ 7 V 150
fOSC Oscillator frequency 1.1 MHz
Frequency accuracy –9% 9%
DMAX Maximum duty cycle 100%
DMIN Minimum duty cycle 0%
tTOD Switching delay time (dead time) 20 ns
tsyncmin Minimum synchronous FET on time 60 ns
Synchronous FET minimum current-off threshold (3) 50 400 mA
BATTERY DETECTION
IDETECT Battery detection current during time-out fault VI(BAT) < VOREG  – VRCH 2 mA
IDISCHRG1 Discharge current VSHORT < VI(BAT) < VOREG  – VRCH 400 μA
tDISCHRG1 Discharge time VSHORT < VI(BAT) < VOREG  – VRCH 1 s
IWAKE Wake current VSHORT < VI(BAT) < VOREG  – VRCH 2 mA
tWAKE Wake time VSHORT < VI(BAT) < VOREG  – VRCH 0.5 s
IDISCHRG2 Termination discharge current Begins after termination detected,
VI(BAT) ≤ VOREG
400 μA
tDISCHRG2 Termination time 262 ms
OUTPUT CAPACITOR
COUT Required output ceramic capacitor range from SNS to PGND, between inductor and RSNS 4.7 10 47 μF
CSNS Required SNS capacitor (ceramic) at SNS pin 0.1 μF
PROTECTION
VOVP OVP threshold voltage Threshold over VOREG to turn off P-channel MOSFET, STAT1, and STAT2 during charge or termination states 110 117 121 %VO(REG)
ILIMIT Cycle-by-cycle current limit 2.6 3.6 4.5 A
VSHORT Short-circuit voltage threshold, BAT VI(BAT) falling 1.95 2 2.05 V/cell
ISHORT Short-circuit current VI(BAT) ≤ VSHORT 35 65 mA
TSHTDWN Thermal trip 165 °C
Thermal hysteresis 10
(1) Inductor peak current should be less than 2.6 A. Use equations 12, 13, 15, 18, and 19 to make sure the peak inductor current is less than 2.6 A.
(2) For bq24125 only. RIN is connected between IN and PGND pins and needed to ensure sleep entry.
(3) N-channel always turns on for approximately 60 ns and then turns off if current is too low.

7.6 Dissipation Ratings

PACKAGE ΘJA ΘJC TA < 40°C
POWER RATING
DERATING FACTOR
ABOVE TA = 40°C
RHL (1) 46.87°C/W 2.15°C/W 1.81 W 0.021 W/°C
(1) This data is based on using the JEDEC High-K board, and the exposed die pad is connected to a copper pad on the board. This is connected to the ground plane by a 2x3 via matrix.

7.7 Typical Characteristics

See Figure 17 for a 1-cell application test circuit schematic and Figure 21 for the standalone cells application test circuits schematic.
bq24120 bq24123 bq24125 eff_il_lus688.gif Figure 1. Efficiency 1-Cell
bq24120 bq24123 bq24125 fst_chg_lus688.gif Figure 3. Switching Waveforms in Fast Charge Mode
bq24120 bq24123 bq24125 dead_t_lus688.gif Figure 5. Dead Time
bq24120 bq24123 bq24125 rad4_lus688.gif
16 V, 1 A
Figure 7. Typical Radiated EMI Performance Measured on EVM
bq24120 bq24123 bq24125 eff2_il_lus688.gif Figure 2. Efficiency 2-Cells
bq24120 bq24123 bq24125 vreg_dcm_lus688.gif Figure 4. Switching Waveforms in Voltage Regulation Mode
bq24120 bq24123 bq24125 sft_st_lus688.gif Figure 6. Soft Start Waveforms