JAJSBJ1B July   2010  – January 2020 BQ24650

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     Device Images
      1.      代表的なアプリケーション
  4. 改訂履歴
  5. 概要(続き)
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Battery Voltage Regulation
      2. 8.3.2  Input Voltage Regulation
      3. 8.3.3  Battery Current Regulation
      4. 8.3.4  Battery Precharge
      5. 8.3.5  Charge Termination and Recharge
      6. 8.3.6  Power Up
      7. 8.3.7  Enable and Disable Charging
      8. 8.3.8  Automatic Internal Soft-Start Charger Current
      9. 8.3.9  Converter Operation
      10. 8.3.10 Synchronous and Non-Synchronous Operation
      11. 8.3.11 Cycle-by-Cycle Charge Undercurrent
      12. 8.3.12 Input Overvoltage Protection (ACOV)
      13. 8.3.13 Input Undervoltage Lockout (UVLO)
      14. 8.3.14 Battery Overvoltage Protection
      15. 8.3.15 Cycle-by-Cycle Charge Overcurrent Protection
      16. 8.3.16 Thermal Shutdown Protection
      17. 8.3.17 Temperature Qualification
      18. 8.3.18 Charge Enable
      19. 8.3.19 Inductor, Capacitor, and Sense Resistor Selection Guidelines
      20. 8.3.20 Charge Status Outputs
      21. 8.3.21 Battery Detection
        1. 8.3.21.1 Example
    4. 8.4 Device Functional Modes
      1. 8.4.1 Converter Operation
      2. 8.4.2 Synchronous and Non-Synchronous Operation
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Inductor Selection
        2. 9.2.2.2 Input Capacitor
        3. 9.2.2.3 Output Capacitor
        4. 9.2.2.4 Power MOSFETs Selection
        5. 9.2.2.5 Input Filter Design
        6. 9.2.2.6 MPPT Temperature Compensation
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12デバイスおよびドキュメントのサポート
    1. 12.1 デバイス・サポート
      1. 12.1.1 デベロッパー・ネットワークの製品に関する免責事項
    2. 12.2 ドキュメントの更新通知を受け取る方法
    3. 12.3 サポート・リソース
    4. 12.4 商標
    5. 12.5 静電気放電に関する注意事項
    6. 12.6 Glossary
  13. 13メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Input Filter Design

During adapter hot plug-in, the parasitic inductance and the input capacitor from the adapter cable form a second order system. The voltage spike at the VCC pin may be beyond the IC maximum voltage rating and damage the IC. The input filter must be carefully designed and tested to prevent an overvoltage event on the VCC pin.

There are several methods to damping or limiting the over-voltage spike during adapter hot plug-in. An electrolytic capacitor with high ESR as an input capacitor can damp the overvoltage spike well below the IC maximum pin voltage rating. A high current capability TVS Zener diode can also limit the over-voltage level to an IC safe level. However, these two solutions may not be lowest cost or smallest size.

A cost-effective and small size solution is shown in Figure 16. R1 and C1 are composed of a damping RC network to damp the hot plug-in oscillation. As a result, the overvoltage spike is limited to a safe level. D1 is used for reverse voltage protection for the VCC pin. C2 is the VCC pin decoupling capacitor and it must be placed as close as possible to the VCC pin. R2 and C2 form a damping RC network to further protect the IC from high dv/dt and high voltage spike. The C2 value must be less than the C1 value so R1 can dominant the equivalent ESR value to get enough damping effect for hot plug-in. R1 and R2 must be sized enough to handle in-rush current power loss according to the resistor manufacturer’s datasheet. The filter component values always need to be verified with a real application. Table 3 lists the components for the typical application.

BQ24650 input_flt_lusa75.gifFigure 16. Input Filter

Table 3. Component List for the Typical System Circuit in Figure 15

PART DESIGNATOR QTY DESCRIPTION
Q1, Q2 2 N-channel MOSFET, 40-V, 10-A, PowerPAK SO-8, Vishay-Siliconix, Si7288
D2 1 Diode, Dual Schottky, 30-V, 200-mA, SOT-23, Fairchild, BAT54C
D3, D4 2 LED Diode, Green, 2.1-V, 20-mA, LTST-C190GKT
RSR 1 Sense Resistor, 20-mΩ, Vishay-Dale, WSL1206R0200DEA
L1 1 Inductor, 10-µH, 7-A, Vishay-Dale IHLP-2525CZ
C6, C8 2 Capacitor, Ceramic, 10-μF, 35-V, 20%, X7R, 1210, Panasonic
C9 1 Capacitor, Ceramic, 4.7-μF, 35-V, 20%, X7R, 1210, Panasonic
C2, C3, C4 3 Capacitor, Ceramic, 1-μF, 35-V, 10%, X7R, 0805, Kemet
C5, C7 2 Capacitor, Ceramic, 0.1-μF, 35-V, 10%, X7R, 0805, Kemet
C1 1 Capacitor, Ceramic, 2.2-μF, 35-V, 10%, X7R, 1210, Kemet
C10 1 Capacitor, Ceramic, 22-pF, 35-V, 10%, X7R, 0603 Kemet
R1 1 Resistor, Chip, 100-kΩ, 1/16-W, 0.5%, 0402
R2, R3 2 Resistor, Chip, 499-kΩ, 1/16-W, 0.5%, 0402
R4 1 Resistor, Chip, 36-kΩ, 1/16-W, 0.5%, 0402
R9 1 Resistor, Chip, 5.23-kΩ, 1/16-W, 1%, 0402
R10 1 Resistor, Chip, 30.1-kΩ, 1/16-W, 1%, 0402
R7, R8 2 Resistor, Chip, 10-kΩ, 1/16-W, 5%, 0402
R6 1 Resistor, Chip, 10-Ω, 1/4-W, 5%, 1206
R5 1 Resistor, Chip, 2-Ω, 1-W, 5%, 2012
D1 1 Diode, Schottky Rectifier, 40-V, 10-A, PDS1040
Q3 1 N-Channel MOSFET, 60-V, 115-mA, SOT-23, 2N7002DICT