JAJSKU9B December   2022  – February 2024 BQ25628 , BQ25629

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. 概要 (続き)
  6. Device Comparison
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Power-On-Reset (POR)
      2. 8.3.2  Device Power Up from Battery
      3. 8.3.3  Device Power Up from Input Source
        1. 8.3.3.1 REGN LDO Power Up
        2. 8.3.3.2 Poor Source Qualification
        3. 8.3.3.3 D+/D– Detection Sets Input Current Limit (BQ25629)
        4. 8.3.3.4 ILIM Pin (BQ25628 Only)
        5. 8.3.3.5 Input Voltage Limit Threshold Setting (VINDPM Threshold)
        6. 8.3.3.6 Converter Power-Up
      4. 8.3.4  Power Path Management
        1. 8.3.4.1 Narrow VDC Architecture
        2. 8.3.4.2 Dynamic Power Management
        3. 8.3.4.3 High Impedance Mode
      5. 8.3.5  Battery Charging Management
        1. 8.3.5.1 Autonomous Charging Cycle
        2. 8.3.5.2 Battery Charging Profile
        3. 8.3.5.3 Charging Termination
        4. 8.3.5.4 Thermistor Qualification
          1. 8.3.5.4.1 Advanced Temperature Profile in Charge Mode
          2. 8.3.5.4.2 TS Pin Thermistor Configuration
          3. 8.3.5.4.3 Cold/Hot Temperature Window in OTG Mode
          4. 8.3.5.4.4 JEITA Charge Rate Scaling
          5. 8.3.5.4.5 TS_BIAS Pin
        5. 8.3.5.5 Charging Safety Timers
      6. 8.3.6  USB On-The-Go (OTG)
        1. 8.3.6.1 Boost OTG Mode
        2. 8.3.6.2 Bypass OTG Mode
        3. 8.3.6.3 PMID Voltage Indicator (PMID_GD)
      7. 8.3.7  Integrated 12-Bit ADC for Monitoring
      8. 8.3.8  Status Outputs ( STAT, INT)
        1. 8.3.8.1 Interrupts and Status, Flag and Mask Bits
        2. 8.3.8.2 Charging Status Indicator (STAT)
        3. 8.3.8.3 Interrupt to Host ( INT)
      9. 8.3.9  BATFET Control
        1. 8.3.9.1 Shutdown Mode
        2. 8.3.9.2 Ship Mode
        3. 8.3.9.3 System Power Reset
      10. 8.3.10 Protections
        1. 8.3.10.1 Voltage and Current Monitoring in Battery Only and HIZ Modes
          1. 8.3.10.1.1 Battery Undervoltage Lockout
          2. 8.3.10.1.2 Battery Overcurrent Protection
        2. 8.3.10.2 Voltage and Current Monitoring in Buck Mode
          1. 8.3.10.2.1 Input Overvoltage
          2. 8.3.10.2.2 System Overvoltage Protection (SYSOVP)
          3. 8.3.10.2.3 Forward Converter Cycle-by-Cycle Current Limit
          4. 8.3.10.2.4 System Short
          5. 8.3.10.2.5 Battery Overvoltage Protection (BATOVP)
          6. 8.3.10.2.6 Sleep and Poor Source Comparators
          7. 8.3.10.2.7 PMID OVP and VBUS Overcurrent
        3. 8.3.10.3 Voltage and Current Monitoring in Boost Mode
          1. 8.3.10.3.1 Boost Mode Overvoltage Protection
          2. 8.3.10.3.2 Boost Mode Duty Cycle Protection
          3. 8.3.10.3.3 Boost Mode PMID Undervoltage Protection
          4. 8.3.10.3.4 Boost Mode Battery Undervoltage
          5. 8.3.10.3.5 Boost Converter Cycle-by-Cycle Current Limit
          6. 8.3.10.3.6 Boost Mode SYS Short
        4. 8.3.10.4 Voltage and Current Monitoring in Bypass Mode
          1. 8.3.10.4.1 Bypass Mode Overvoltage Protection
          2. 8.3.10.4.2 Bypass Mode Battery OCP
          3. 8.3.10.4.3 Bypass Mode Reverse-Current Protection
          4. 8.3.10.4.4 Bypass Mode Battery Undervoltage
          5. 8.3.10.4.5 Bypass Mode SYS Short
          6. 8.3.10.4.6 Bypass Mode REGN Fault
        5. 8.3.10.5 Thermal Regulation and Thermal Shutdown
          1. 8.3.10.5.1 Thermal Protection in Buck Mode
          2. 8.3.10.5.2 Thermal Protection in Boost Mode
          3. 8.3.10.5.3 Thermal Protection in Battery-Only Mode
    4. 8.4 Device Functional Modes
      1. 8.4.1 Host Mode and Default Mode
      2. 8.4.2 Register Bit Reset
    5. 8.5 Programming
      1. 8.5.1 Serial Interface
        1. 8.5.1.1 Data Validity
        2. 8.5.1.2 START and STOP Conditions
        3. 8.5.1.3 Byte Format
        4. 8.5.1.4 Acknowledge (ACK) and Not Acknowledge (NACK)
        5. 8.5.1.5 Target Address and Data Direction Bit
        6. 8.5.1.6 Single Write and Read
        7. 8.5.1.7 Multi-Write and Multi-Read
    6. 8.6 Register Maps
      1. 8.6.1 Register Programming
      2. 8.6.2 BQ25628 Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Inductor Selection
        2. 9.2.2.2 Input Capacitor
        3. 9.2.2.3 Output Capacitor
      3. 9.2.3 Application Curves
  11. 10Power Supply Recommendations
  12. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  13. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 サード・パーティ製品に関する免責事項
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 ドキュメントの更新通知を受け取る方法
    4. 12.4 サポート・リソース
    5. 12.5 Trademarks
    6. 12.6 静電気放電に関する注意事項
    7. 12.7 用語集
  14. 13Revision History
  15. 14Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報
TS Pin Thermistor Configuration

The typical TS resistor network is illustrated below.

GUID-20210126-CA0I-KR9F-MCRC-JRQL3SXT1TG7-low.svg Figure 8-4 TS Resistor Network

The value of RT1 and RT2 are determined from the resistance of the thermistor at 0 and 60ºC (RTH0degC and RTH60degC) and the corresponding voltage thresholds VTS_0degC and VTS_60degC (expressed as percentage of REGN with value between 0 and 1). For the most accurate thermistor curve fitting, use the rising threshold for VTS_COLD at 0ºC and the falling threshold for VTS_HOT at 60ºC, regardless of the actual register settings for TS_TH1_TH2_TH3 and TS_TH4_TH5_TH6.

Equation 1. RT2 = RTH 0degC × RTH 60degC × ( 1 V TS_0degC - 1 V TS_60degC ) RTH 60degC × ( 1 V TS_60degC - 1 ) - RTH 0degC × ( 1 V TS_0degC - 1 )
Equation 2. RT1 = 1 V TS_0degC - 1 1 R T2 + 1 RTH 0degC

Assuming a 103AT NTC thermistor on the battery pack, the RT1 and RT2 are calculated to be 5.32 kΩ and 30.1 kΩ respectively.

If the thermistor is biased from TS_BIAS, the maximum current should be checked against ITS_BIAS_FAULT. For the worst-case condition of thermistor at 0-Ω impedance (very hot), the bias current is :

Equation 3. I BIAS_MAX = V REGN RT1

For 5.30-kΩ RT1, this has a maximum IBIAS of 0.94 mA, which is well below the minimum ITS_BIAS_FAULT threshold. The 103AT NTC thermistor is the recommended thermistor and has 10-kΩ nominal impedance. Using a lower impedance thermistor will change the value of R1 and may produce a bias current that exceeds the TS_BIAS pin fault threshold. TS_STAT[2:0] is set to 111.