SLUSBF2C July   2013  – August 2015

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Power-On Reset
    6. 7.6  2.5-V LDO Regulator
    7. 7.7  Charger Attachment and Removal Detection
    8. 7.8  Voltage Doubler
    9. 7.9  Overvoltage Protection (OVP)
    10. 7.10 Undervoltage Protection (UVP)
    11. 7.11 Overcurrent in Discharge (OCD)
    12. 7.12 Overcurrent in Charge (OCC)
    13. 7.13 Short-Circuit in Discharge (SCD)
    14. 7.14 Low-Voltage Charging
    15. 7.15 Internal Temperature Sensor Characteristics
    16. 7.16 Internal Clock Oscillators
    17. 7.17 Integrating ADC (Coulomb Counter) Characteristics
    18. 7.18 ADC (Temperature and Cell Voltage) Characteristics
    19. 7.19 Data Flash Memory Characteristics
    20. 7.20 I2C-Compatible Interface Timing Characteristics
    21. 7.21 HDQ Communication Timing Characteristics
    22. 7.22 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Configuration
      2. 8.3.2 Fuel Gauging
      3. 8.3.3 Wake-Up Comparator
      4. 8.3.4 Battery Parameter Measurements
        1. 8.3.4.1 Charge and Discharge Counting
        2. 8.3.4.2 Voltage
        3. 8.3.4.3 Current
        4. 8.3.4.4 Auto-Calibration
        5. 8.3.4.5 Temperature
      5. 8.3.5 Communications
        1. 8.3.5.1 HDQ Single-Pin Serial Interface
        2. 8.3.5.2 HDQ Host Interruption
          1. 8.3.5.2.1 Low Battery Capacity
          2. 8.3.5.2.2 Temperature
        3. 8.3.5.3 I2C Interface
          1. 8.3.5.3.1 I2C Time Out
          2. 8.3.5.3.2 I2C Command Waiting Time
    4. 8.4 Device Functional Modes
      1. 8.4.1 NORMAL Mode
      2. 8.4.2 SLEEP Mode
      3. 8.4.3 FULLSLEEP Mode
      4. 8.4.4 Battery Protector Description
        1. 8.4.4.1 High-Side N-Channel FET Charge and Discharge FET Drive
        2. 8.4.4.2 Operating Modes
          1. 8.4.4.2.1 VIRTUAL SHUTDOWN Mode
            1. 8.4.4.2.1.1 ANALOG SHUTDOWN Mode
            2. 8.4.4.2.1.2 LOW-VOLTAGE CHARGING Mode
          2. 8.4.4.2.2 UNDERVOLTAGE FAULT Mode
          3. 8.4.4.2.3 NORMAL Mode
          4. 8.4.4.2.4 SHUTDOWN WAIT Mode
          5. 8.4.4.2.5 OVERCURRENT IN DISCHARGE (OCD) and SHORT-CIRCUIT IN DISCHARGE (SCD) FAULT Mode
          6. 8.4.4.2.6 OVERCURRENT IN CHARGE (OCC) FAULT Mode
          7. 8.4.4.2.7 OVERVOLTAGE PROTECTION (OVP) FAULT Mode
        3. 8.4.4.3 Firmware Control of Protector
      5. 8.4.5 OVERTEMPERATURE FAULT Mode
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Pack-Side, Single-Cell Li-Ion Fuel Gauge and Protector
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1  BAT Voltage Sense Input
          2. 9.2.1.2.2  SRP and SRN Current Sense Inputs
          3. 9.2.1.2.3  Sense Resistor Selection
          4. 9.2.1.2.4  TS Temperature Sense Input
          5. 9.2.1.2.5  Thermistor Selection
          6. 9.2.1.2.6  VPWR Power Supply Input Filtering
          7. 9.2.1.2.7  REG25 LDO Output Filtering
          8. 9.2.1.2.8  Communication Interface Lines
          9. 9.2.1.2.9  PACKP Voltage Sense Input
          10. 9.2.1.2.10 CHG and DSG Charge Pump Voltage Outputs
          11. 9.2.1.2.11 N-Channel FET Selection
          12. 9.2.1.2.12 Additional ESD Protection Components
        3. 9.2.1.3 Application Curves
  10. 10Power Supply Recommendations
    1. 10.1 Power Supply Decoupling
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Li-Ion Cell Connections
      2. 11.1.2 Sense Resistor Connections
      3. 11.1.3 Thermistor Connections
      4. 11.1.4 FET Connections
      5. 11.1.5 ESD Component Connections
      6. 11.1.6 High Current and Low Current Path Separation
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VVPWR Power input –0.3 5.5 V
VREG25 Supply voltage –0.3 2.75 V
VPACKP PACKP input pin –0.3 5.5 V
PACK+ input when external 2-kΩ resistor is in series with PACKP input pin (see (1)) –0.3 28 V
VOUT Voltage output pins (DSG, CHG) –0.3 10 V
VIOD1 Push-pull IO pins (RC2) –0.3 2.75 V
VIOD2 Open-drain IO pins (SDA, SCL, HDQ, NC) –0.3 5.5 V
VBAT BAT input pin –0.3 5.5 V
VI Input voltage to all other pins (SRP, SRN) –0.3 5.5 V
VTS Input voltage for TS –0.3 2.75 V
TA Operating free-air temperature –40 85 °C
TF Functional temperature –40 100 °C
TSTG Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

TA = 25°C, CREG25 = 1.0 µF, and VVPWR = 3.6 V (unless otherwise noted)
PARAMETER TEST CONDITION MIN NOM MAX UNIT
VVPWR Supply voltage No operating restrictions 2.8 5 V
No FLASH writes 2.45 2.8
CVPWR External input capacitor for internal LDO between VPWR and VSS Nominal capacitor values specified. Recommend a 5% ceramic X5R type capacitor located close to the device. 0.1 µF
CREG25 External output capacitor for internal LDO between REG25 and VSS 0.47 1 µF
ICC Normal operating mode current(1)(2) (VPWR) Fuel gauge in NORMAL mode.
ILOAD > Sleep Current with charge pumps on (FETs on)
167 µA
ISLP SLEEP mode current(1)(2) (VPWR) Fuel gauge in SLEEP+ mode.
ILOAD < Sleep Current with charge pumps on (FETs on)
88 µA
IFULLSLP FULLSLEEP mode current(1)(2) (VPWR) Fuel gauge in SLEEP mode.
ILOAD < Sleep Current with charge pumps on (FETs on)
40 µA
ISHUTDOWN Shutdown mode current(1)(2) (VPWR) Fuel gauge in SHUTDOWN mode.
UVP tripped with fuel gauge and protector turned off (FETs off)
VVPWR = 2.5 V
TA = 25°C
0.1 0.2 µA
TA = –40°C to 85°C 0.5 µA
VOL Output voltage low (SCL, SDA, HDQ, NC, RC2) IOL = 1 mA 0.4 V
VOH(OD) Output voltage high (SDA, SCL, HDQ, NC, RC2) External pullup resistor connected to VREG25 VREG25 – 0.5 V
VIL Input voltage low (SDA, SCL, HDQ, NC) –0.3 0.6 V
VIH(OD) Input voltage high (SDA, SCL, HDQ, NC) 1.2 5.5 V
VA1 Input voltage range (TS) VSS – 0.125 2 V
VA2 Input voltage range (BAT) VSS – 0.125 5 V
VA3 Input voltage range (SRP, SRN) VVPWR – 0.125 VVPWR + 0.125 V
Ilkg Input leakage current (I/O pins) 0.3 µA
tPUCD Power-up communication delay 250 ms
(1) All currents are specified as charge pump on (FETs on).
(2) All currents are continuous average over 5-second period.

7.4 Thermal Information

THERMAL METRIC(1) bq27741-G1 UNIT
YZF [DSBGA]
15 PINS
RθJA Junction-to-ambient thermal resistance 70 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 17
RθJB Junction-to-board thermal resistance 20
ψJT Junction-to-top characterization parameter 1
ψJB Junction-to-board characterization parameter 18
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Power-On Reset

TA = 25°C, CREG25 = 1.0 µF, and VVPWR = 3.6 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIT+ Increasing battery voltage input at VREG25 2.09 2.20 2.31 V
VHYS Power-on reset hysteresis 115 mV

7.6 2.5-V LDO Regulator(1)

TA = 25°C, CREG25 = 1.0 µF, and VVPWR = 3.6 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VREG25 Regulator output voltage 2.8 V ≤ VVPWR ≤ 4.5 V,
IOUT(1) ≤ 16 mA
TA = –40°C to 85°C 2.3 2.5 2.6 V
2.45 V ≤ VVPWR < 2.8 V (low battery),
IOUT(1) ≤ 3 mA
2.3 V
ISHORT(2) Short-circuit current limit VREG25 = 0 V TA = –40°C to 85°C 250 mA
(1) LDO output current, IOUT, is the sum of internal and external load currents.
(2) Assured by characterization. Not production tested.

7.7 Charger Attachment and Removal Detection

TA = 25°C, CREG25 = 1.0 µF, and VVPWR = 3.6 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VCHGATT Voltage threshold for charger attachment detection 2.7 3 V
VCHGREM Voltage threshold for charger removal detection 0.5 1 V

7.8 Voltage Doubler

TA = 25°C, CREG25 = 1.0 µF, and VVPWR = 3.6 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VFETON CHG and DSG FETs on IL = 1 µA
TA = –40°C to 85°C
2 × VVPWR – 0.4 2 × VVPWR – 0.2 2 × VVPWR V
VFETOFF CHG and DSG FETs off TA = –40°C to 85°C 0.2 V
VFETRIPPLE(1) CHG and DSG FETs on IL = 1 µA
TA = –40°C to 85°C
0.1 VPP
tFETON FET gate rise time
(10% to 90%)
CL = 4 nF
TA = –40°C to 85°C
No series resistance
67 140 218 μs
tFETOFF FET gate fall time
(90% to 10%)
CL = 4 nF
TA = –40°C to 85°C
No series resistance
10 30 60 μs
(1) Assured by characterization. Not production tested.

7.9 Overvoltage Protection (OVP)

TA = 25°C and CREG25 = 1.0 µF (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VOVP OVP detection voltage threshold TA = 25°C VOVP – 0.006 VOVP VOVP + 0.006 V
TA = 0°C to 25°C VOVP – 0.023 VOVP VOVP + 0.020
TA = 25°C to 50°C VOVP – 0.018 VOVP VOVP + 0.014
TA = –40°C to 85°C VOVP – 0.053 VOVP VOVP + 0.035
VOVPREL OVP release voltage TA = 25°C VOVPREL – 0.012 VOVP – 0.215 VOVPREL + 0.012 V
TA = 0°C to 25°C VOVPREL – 0.023 VOVP – 0.215 VOVPREL + 0.020
TA = 25°C to 50°C VOVPREL – 0.018 VOVP – 0.215 VOVPREL + 0.014
TA = –40°C to 85°C VOVPREL – 0.053 VOVP – 0.215 VOVPREL + 0.035
tOVP OVP delay time TA = –40°C to 85°C tOVP – 5% tOVP tOVP + 5% s

7.10 Undervoltage Protection (UVP)

TA = 25°C and CREG25 = 1.0 µF (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VUVP UVP detection voltage threshold TA = 25°C VUVP – 0.012 VUVP VUVP + 0.012 V
TA = –5°C to 50°C VUVP – 0.020 VUVP VUVP + 0.020
TA = –40°C to 85°C VUVP – 0.040 VUVP VUVP + 0.040
VUVPREL UVP release voltage TA = 25°C VUVPREL – 0.012 VUVP + 0.105 VUVPREL + 0.012 V
TA = –5°C to 50°C VUVPREL – 0.020 VUVP + 0.105 VUVPREL + 0.020
TA = –40°C to 85°C VUVPREL – 0.040 VUVP + 0.105 VUVPREL + 0.040
tUVP UVP delay time TA = –40°C to 85°C tUVP – 5% tUVP tUVP + 5% ms

7.11 Overcurrent in Discharge (OCD)

TA = 25°C, CREG25 = 1.0 µF, and VVPWR = 3.6 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VOCD OCD detection voltage threshold TA = 25°C
VSRN – VSRP
VOCD – 3 VOCD VOCD + 3 mV
TA = –20°C to 60°C
VSRN – VSRP
VOCD – 3.785 VOCD VOCD + 3.785
TA = –40°C to 85°C
VSRN – VSRP
VOCD – 4.16 VOCD VOCD + 4.16
tOCD OCD delay time TA = –40°C to 85°C tOCD – 5% tOCD tOCD + 5% ms

7.12 Overcurrent in Charge (OCC)

TA = 25°C, CREG25 = 1.0 µF, and VVPWR = 3.6 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VOCC OCC detection voltage threshold TA = 25°C
VSRP – VSRN
VOCC – 3 VOCC VOCC + 3 mV
TA = –20°C to 60°C
VSRP – VSRN
VOCC – 3.49 VOCC VOCC + 3.49
TA = –40°C to 85°C
VSRP – VSRN
VOCC – 3.86 VOCC VOCC + 3.86
tOCC OCC delay time TA = –40°C to 85°C tOCC – 5% tOCC tOCC + 5% ms

7.13 Short-Circuit in Discharge (SCD)

TA = 25°C, CREG25 = 1.0 µF, and VVPWR = 3.6 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VSCD SCD detection voltage threshold TA = 25°C
VSRN – VSRP
VSCD – 3 VSCD VSCD + 3 mV
TA = –20°C to 60°C
VSRN – VSRP
VSCD – 4.5 VSCD VSCD + 4.5
TA = –40°C to 85°C
VSRN – VSRP
VSCD – 4.9 VSCD VSCD + 4.9
tSCD SCD delay time TA = –40°C to 85°C tSCD – 10% tSCD tSCD + 10% µs

7.14 Low-Voltage Charging

TA = 25°C, CREG25 = 1.0 µF, and VVPWR = 3.6 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VLVDET Voltage threshold for low-voltage charging detection TA = –40°C to 85°C 1.4 1.55 1.7 V

7.15 Internal Temperature Sensor Characteristics

TA = –40°C to 85°C, 2.4 V < VREG25 < 2.6 V
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
G(TEMP) Temperature sensor voltage gain –2 mV/°C

7.16 Internal Clock Oscillators

2.4 V < VREG25 < 2.6 V; typical values at TA = 25°C and VREG25 = 2.5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fOSC Operating frequency 8.389 MHz
f(LOSC) Operating frequency 32.768 kHz

7.17 Integrating ADC (Coulomb Counter) Characteristics

TA = –40°C to 85°C, 2.4 V < VREG25 < 2.6 V; typical values at TA = 25°C and VREG25 = 2.5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VSR_IN Input voltage range, VSRN and VSRP VSR = VSRN – VSRP VVPWR – 0.125 VVPWR + 0.125 V
tSR_CONV Conversion time Single conversion 1 s
Resolution 14 15 bits
VSR_OS Input offset 10 μV
INL Integral nonlinearity error ±0.007% ±0.034% FSR
ZSR_IN Effective input resistance(1) 7
ISR_LKG Input leakage current(1) 0.3 μA
(1) Assured by design. Not production tested.

7.18 ADC (Temperature and Cell Voltage) Characteristics

TA = –40°C to 85°C, 2.4 V < VREG25 < 2.6 V; typical values at TA = 25°C and VREG25 = 2.5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VADC_IN Input voltage range (VBAT channel) VSS – 0.125 5 V
Input voltage range (other channels) VSS – 0.125 1 V
tADC_CONV Conversion time 125 ms
Resolution 14 15 bits
VADC_OS Input offset 1 mV
ZADC1 Effective input resistance (TS) (1) 55
ZADC2 Effective input resistance (BAT)(1) Not measuring cell voltage 55
Measuring cell voltage 100
IADC_LKG Input leakage current(1) 0.3 μA
(1) Assured by design. Not production tested.

7.19 Data Flash Memory Characteristics

TA = –40°C to 85°C, 2.4 V < VREG25 < 2.6 V; typical values at TA = 25°C and VREG25 = 2.5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tDR Data retention(1) 10 years
Flash programming write-cycles (1) 20,000 cycles
tWORDPROG Word programming time(1) 2 ms
ICCPROG Flash-write supply current(1) 5 10 mA
(1) Assured by design. Not production tested.

7.20 I2C-Compatible Interface Timing Characteristics

TA = –40°C to 85°C, 2.4 V < VREG25 < 2.6 V; typical values at TA = 25°C and VREG25 = 2.5 V (unless otherwise noted)
MIN TYP MAX UNIT
tR SCL or SDA rise time 300 ns
tF SCL or SDA fall time 300 ns
tw(H) SCL pulse width (high) 600 ns
tw(L) SCL pulse width (low) 1.3 μs
tsu(STA) Setup for repeated start 600 ns
td(STA) Start to first falling edge of SCL 600 ns
tsu(DAT) Data setup time 100 ns
th(DAT) Data hold time 0 ns
tsu(STOP) Setup time for stop 600 ns
tBUF Bus free time between stop and start 66 μs
fSCL Clock frequency 400 kHz

7.21 HDQ Communication Timing Characteristics

TA = –40°C to 85°C, 2.4 V < VREG25 < 2.6 V; typical values at TA = 25°C and VREG25 = 2.5 V (unless otherwise noted)
MIN TYP MAX UNIT
t(CYCH) Cycle time, host to fuel gauge 190 μs
t(CYCD) Cycle time, fuel gauge to host 190 205 250 μs
t(HW1) Host sends 1 to fuel gauge 0.5 50 μs
t(DW1) Fuel gauge sends 1 to host 32 50 μs
t(HW0) Host sends 0 to fuel gauge 86 145 μs
t(DW0) Fuel gauge sends 0 to host 80 145 μs
t(RSPS) Response time, fuel gauge to host 190 950 μs
t(B) Break time 190 μs
t(BR) Break recovery time 40 μs
t(RST) HDQ reset 1.8 2.2 s
t(RISE) HDQ line rise time to logic 1 (1.2 V) 950 ns
t(TRND) Turnaround time (time from the falling edge of the last transmitted bit of 8-bit data and the falling edge of the next Break signal) 210 μs
bq27741-G1 i2c_comp_lus815.gifFigure 1. I2C-Compatible Interface Timing Diagrams
bq27741-G1 timing_diag_lusbf2.gifFigure 2. HDQ Timing Diagrams

7.22 Typical Characteristics

bq27741-G1 OVP_Delay_Plot.pngFigure 3. Overvoltage Delay Time
bq27741-G1 OCC_Delay_Plot.pngFigure 5. Overcurrent in Charge Delay Time
bq27741-G1 SCD_Delay_Plot.pngFigure 7. Short-Circuit Current in Discharge Delay Time
bq27741-G1 UVP_Delay_Plot.pngFigure 4. Undervoltage Delay Time
bq27741-G1 OCD_Delay_Plot.pngFigure 6. Overcurrent in Discharge Delay Time