SLUSA92D January   2011  – May 2015

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Simplified Schematic
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Supply Current
    6. 7.6  Power-On Reset (POR)
    7. 7.7  WAKE FROM SLEEP
    8. 7.8  RBI RAM Backup
    9. 7.9  3.3-V Regulator
    10. 7.10 2.5-V Regulator
    11. 7.11 DISP, PRES, SMBD, SMBC
    12. 7.12 CHG, DSG FET Drive
    13. 7.13 Internal Precharge Limiting
    14. 7.14 GPOD
    15. 7.15 FUSE
    16. 7.16 LED5, LED4, LED3, LED2, LED1
    17. 7.17 Coulomb Counter
    18. 7.18 VC1, VC2, VC3, VC4
    19. 7.19 TS1, TS2
    20. 7.20 Internal Temperature Sensor
    21. 7.21 Internal Thermal Shutdown
    22. 7.22 High Frequency Oscillator
    23. 7.23 Low Frequency Oscillator
    24. 7.24 Internal Voltage Reference
    25. 7.25 Flash
    26. 7.26 OCD Current Protection
    27. 7.27 SCD1 Current Protection
    28. 7.28 SCD2 Current Protection
    29. 7.29 SCC Current Protection
    30. 7.30 SBS Timing Requirements
    31. 7.31 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Primary (1st Level) Safety Features
      2. 8.3.2 Secondary (2nd Level) Safety Features
      3. 8.3.3 Charge Control Features
      4. 8.3.4 Gas Gauging
      5. 8.3.5 Lifetime Data Logging Features
      6. 8.3.6 Authentication
    4. 8.4 Device Functional Modes
    5. 8.5 Configuration
      1. 8.5.1 Oscillator Function
      2. 8.5.2 System Present Operation
      3. 8.5.3 2-, 3-, or 4-Cell Configuration
      4. 8.5.4 Cell Balancing
        1. 8.5.4.1 Internal Cell Balancing
        2. 8.5.4.2 External Cell Balancing
    6. 8.6 Battery Parameter Measurements
      1. 8.6.1 Charge and Discharge Counting
      2. 8.6.2 Voltage
      3. 8.6.3 Current
      4. 8.6.4 Auto Calibration
      5. 8.6.5 Temperature
      6. 8.6.6 Communications
        1. 8.6.6.1 SMBus On and Off State
        2. 8.6.6.2 SBS Commands
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 High-Current Path
          1. 9.2.2.1.1 Protection FETs
          2. 9.2.2.1.2 Chemical Fuse
          3. 9.2.2.1.3 Lithium-Ion Cell Connections
          4. 9.2.2.1.4 Sense Resistor
          5. 9.2.2.1.5 ESD Mitigation
        2. 9.2.2.2 Gas Gauge Circuit
          1. 9.2.2.2.1 Differential Low-Pass Filter
          2. 9.2.2.2.2 Power Supply Decoupling and RBI
          3. 9.2.2.2.3 System Present
          4. 9.2.2.2.4 SMBus Communication
          5. 9.2.2.2.5 FUSE Circuitry
          6. 9.2.2.2.6 PFIN Detection
        3. 9.2.2.3 Secondary-Current Protection
          1. 9.2.2.3.1 Cell and Battery Inputs
          2. 9.2.2.3.2 External Cell Balancing
          3. 9.2.2.3.3 PACK and FET Control
          4. 9.2.2.3.4 Regulator Output
          5. 9.2.2.3.5 Temperature Output
          6. 9.2.2.3.6 LEDs
          7. 9.2.2.3.7 Safety PTC Thermistor
        4. 9.2.2.4 Secondary-Overvoltage Protection
          1. 9.2.2.4.1 Cell Inputs
          2. 9.2.2.4.2 Time-Delay Capacitor
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

7 Specifications

7.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage range, VMAX VCC, PCHGIN, PCR, TEST, PACK w.r.t. VSS –0.3 34 V
Input voltage range, VIN VC1, BAT VVC2 – 0.3 VVC2 + 8.5 V
or 34 V,
whichever is lower
V
VC2 VVC3 – 0.3 VVC3 + 8.5 V
VC3 VVC4 – 0.3 VVC4 + 8.5 V
VC4 VSRP – 0.3 VSRP + 8.5 V
SRP, SRN –0.5 0.5
LED1, LED2, LED3, LED4, LED5, SMBC, SMBD VSS – 0.3 6.0
DISP,TS1, TS2, PRES –0.3 V VREG25 + 0.3 V
Output voltage range, VO DSG –0.3 VPACK + 20 V or
VSS + 34 V, whichever is lower
V
CHG –0.3 VBAT + 20 V or
VSS + 34 V, whichever is lower
GPOD, FUSE –0.3 34
RBI, REG25 –0.3 2.75
REG33 –0.3 5.0
Maximum VSS current, ISS 50 mA
Current for cell balancing, ICB 10
ESD Rating HBM, VCx Only 1 kV
Functional Temperature, TFUNC –40 110 °C
Storage temperature, TSTG –65 150 °C
Lead temperature (soldering, 10 s), TSOLDER 300 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

Typical values stated where TA = 25ºC and VCC = 14.4 V, Min/Max values stated where TA= –40ºC to 85ºC and VCC = 3.8 V to 25 V (unless otherwise noted)
MIN NOM MAX UNIT
Supply voltage VCC, PACK, PCHGIN, PCR 25 V
BAT 3.8 VVC2 + 5.0
VSTARTUP Start up voltage at PACK 3.0 5.5 V
VIN Input voltage range VC1, BAT VVC2 VVC2 + 5.0 V
VC2 VVC3 VVC3 + 5.0
VC3 VVC4 VVC4 + 5.0
VC4 VSRP VSRP + 5.0
VCn – VC(n+1), (n=1, 2, 3, 4) 0 5.0
PACK 25
SRP to SRN –0.2 0.2
CREG33 External 3.3V REG capacitor 1 µF
CREG25 External 2.5V REG capacitor 1 µF
TOPR Operating temperature –40 85 °C

7.4 Thermal Information

THERMAL METRIC bq3050 UNIT
TSSOP (DBT)
38 PINS
RθJA Junction-to-ambient thermal resistance 64.2 °C/W
RθJC(top) Junction-to-case(top) thermal resistance 16.5
RθJB Junction-to-board thermal resistance 31.2
ψJT Junction-to-top characterization parameter 0.3
ψJB Junction-to-board characterization parameter 26.9
RθJC(bot) Junction-to-case(bottom) thermal resistance n/a

7.5 Supply Current

Typical values stated where TA = 25ºC and VCC = 14.4 V, Min/Max values stated where TA= –40ºC to 85ºC and VCC = 3.8 V to 25 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ICC Normal CHG on, DSG on, no Flash write 410 µA
Sleep CHG on, DSG on, no SBS communication 160
CHG off, DSG off, no SBS communication 80
Shutdown 3.7

7.6 Power-On Reset (POR)

Typical values stated where TA = 25ºC and VCC = 14.4 V, Min/Max values stated where TA= –40ºC to 85ºC and VCC = 3.8 V to 25 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIT– Negative-going voltage input At REG25 1.9 2.0 2.1 V
VHYS POR Hysteresis At REG25 65 125 165 mV

7.7 WAKE FROM SLEEP

Typical values stated where TA = 25ºC and VCC = 14.4 V, Min/Max values stated where TA= –40ºC to 85ºC and VCC = 3.8 V to 25 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VWAKE VWAKE Threshold VWAKE 0.2 1.2 2.0 mV
VWAKE 0.4 2.4 3.6
VWAKE 2.0 5.0 6.8
VWAKE 5.3 10 13
VWAKE_TCO Temperature drift of VWAKE accuracy 0.5% °C
tWAKE Time from application of current and wake of bq3050 0.2 1 ms

7.8 RBI RAM Backup

Typical values stated where TA = 25ºC and VCC = 14.4 V, Min/Max values stated where TA= –40ºC to 85ºC and VCC = 3.8 V to 25 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
I(RBI) RBI data-retention input current VRBI > V(RBI)MIN, VCC < VIT 20 1100 nA
VRBI > V(RBI)MIN, VCC < VIT,
TA= 0°C to 70°C
500
V(RBI) RBI data-retention voltage 1 V

7.9 3.3-V Regulator

Typical values stated where TA = 25ºC and VCC = 14.4 V, Min/Max values stated where TA= –40ºC to 85ºC and VCC = 3.8 V to 25 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VREG33 Regulator output voltage 3.8 V < VCC or BAT ≤ 5 V,
ICC ≤4 mA
2.4 3.5 V
5V < VCC or BAT ≤ 6.8 V,
ICC ≤13 mA
3.1 3.3 3.5
6.8 V < VCC or BAT ≤ 20 V,
ICC ≤ 30 mA
3.1 3.3 3.5
IREG33 Regulator output current 2 mA
ΔV(VDDTEMP) Regulator output change with temperature VCC or BAT = 14.4 V, IREG33 = 2 mA 0.2%
ΔV(VDDLINE) Line regulation VCC or BAT = 14.4 V, IREG33 = 2 mA 1 13 mV
ΔV(VDDLOAD) Load regulation VCC or BAT = 14.4 V, IREG33 = 2 mA 5 18 mV
I(REG33MAX) Current limit VCC or BAT = 14.4 V, VREG33 = 3 V 70 mA
VCC or BAT = 14.4 V, VREG33 = 0 V 33

7.10 2.5-V Regulator

Typical values stated where TA = 25ºC and VCC = 14.4 V, Min/Max values stated where TA= –40ºC to 85ºC and VCC = 3.8 V to 25 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VREG25 Regulator output voltage IREG25 = 10 mA 2.35 2.5 2.55 V
IREG25 Regulator Output Current 3 mA
ΔV(VDDTEMP) Regulator output change with temperature VCC or BAT = 14.4 V, IREG25 = 2 mA 0.25%
ΔV(VDDLINE) Line regulation VCC or BAT = 14.4 V, IREG25 = 2 mA 1 4 mV
ΔV(VDDLOAD) Load regulation VCC or BAT = 14.4 V, IREG25 = 2 mA 20 40 mV
I(REG33MAX) Current limit VCC or BAT = 14.4 V, VREG25 = 2.3 V 65 mA
VCC or BAT = 14.4 V, VREG25 = 0 V 23

7.11 DISP, PRES, SMBD, SMBC

Typical values stated where TA = 25ºC and VCC = 14.4 V, Min/Max values stated where TA= –40ºC to 85ºC and VCC = 3.8 V to 25 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIH High-level input DISP, PRES, SMBD, SMBC 2.0 V
VIL Low-level input DISP, PRES, SMBD, SMBC 0.8 V
VOL Low-level output voltage SMBD, SMBC 0.4 V
CIN Input capacitance DISP, PRES, SMBD, SMBC 5 pF
ILKG Input leakage current DISP, PRES, SMBD, SMBC 1 μA
IWPU Weak Pull Up Current PRES, VOH = VREG25 – 0.5 V 60 120 μA
I(DISP) DISP source currents DISP active, DISP = VREG25 – 0.6 V –3 mA
ILKG(DISP) DISP leakage current DISP inactive –0.22 0.22 μA
RPD(SMBx) SMBC, SMBD Pull-Down TA = –40 to 100˚C 550 775 1000

7.12 CHG, DSG FET Drive

Typical values stated where TA = 25ºC and VCC = 14.4 V, Min/Max values stated where TA= –40ºC to 85ºC and VCC = 3.8 V to 25 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
V(FETON) Output voltage, charge, and discharge FETs on VO(FETONDSG) = V(DSG) – VPACK, VGS connect 10 MΩ, VCC 3.8 V to 8.4 V 8.0 9.7 12 V
VO(FETONDSG) = V(DSG) – VPACK, VGS connect 10 MΩ, VCC > 8.4 V 9.0 11 12
VO(FETONCHG) = V(CHG) – VBAT, VGS connect 10 MΩ, VCC 3.8 V to 8.4 V 8.0 9.7 12
VO(FETONCHG) = V(CHG) – VBAT, VGS connect 10 MΩ, VCC > 8.4 V 9.0 11 12
V(FETOFF) Output voltage, charge and discharge FETs off VO(FETOFFDSG) = V(DSG) – VPACK –0.4 0.4 V
VO(FETOFFCHG) = V(CHG) – VBAT –0.4 0.4
tr Rise time CL= 4700 pF
RG= 5.1 kΩ
VCC < 8.4
VDSG: VBAT to VBAT + 4 V
VCHG: VPACK to VPACK + 4 V
800 1400 μs
CL = 4700 pF
RG = 5.1 kΩ
VCC > 8.4
VDSG: VBAT to VBAT + 4 V
VCHG: VPACK to VPACK + 4 V
200 500
tf Fall time CL = 4700 pF
RG = 5.1 kΩ
VDSG: VBAT + VO(FETONDSG) to VBAT + 1 V
VCHG: VPACK + VO(FETONCHG) to VPACK + 1 V
80 200 μs

7.13 Internal Precharge Limiting

Typical values stated where TA = 25ºC and VCC = 14.4 V, Min/Max values stated where TA= –40ºC to 85ºC and VCC = 3.8 V to 25 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IPCHGMAX Maximum Precharge current 3-cell and 4-cell configuration 100 mA
RPCHG_RDSON Internal Precharge FET RDSON VDS(PRECHG) ≥ 1 V, VCC < 8.4 V 30 55 85 Ω
VDS(PRECHG) ≥ 1 V, VCC ≥ 8.4 V 15 30 55

7.14 GPOD

Typical values stated where TA = 25ºC and VCC = 14.4 V, Min/Max values stated where TA= –40ºC to 85ºC and VCC = 3.8 V to 25 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VPU_GPOD GPOD Pull-Up Voltage VCC V
VOL_GPOD GPOD Output Voltage Low IOL = 1 mA 0.3 V

7.15 FUSE

Typical values stated where TA = 25ºC and VCC = 14.4 V, Min/Max values stated where TA= –40ºC to 85ºC and VCC = 3.8 V to 25 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VOH(FUSE) High Level FUSE Output VCC = 3.8 V to 9 V 2.4 8.5 V
VCC = 9 V to 25 V 7 8 9
VIH(FUSE) Weak pull-up current in off state(1) 2.8 V
100 nA
tR(FUSE) FUSE Output Rise Time CL = 1 nF, VCC = 9 V to 25 V, VOH(FUSE) = 0 V to 5 V 5 20 μs
ZO(FUSE) FUSE Output Impedance 2 5
(1) Verified by design. Not production tested.

7.16 LED5, LED4, LED3, LED2, LED1

Typical values stated where TA = 25ºC and VCC = 14.4 V, Min/Max values stated where TA= –40ºC to 85ºC and VCC = 3.8 V to 25 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
CIN Input capacitance 5 pF
ILKG Input leakage current 1 μA
IOL Low-level output current VOL = 0.4 V,
3 mA setting
2.5 3.5 4.5 mA
VOL = 0.4 V,
4 mA setting
3.0 4.5 6.0
VOL = 0.4 V,
5 mA setting
3.5 5.5 7.5
ILEDx Current matching between LEDx 0.1 mA

7.17 Coulomb Counter

Typical values stated where TA = 25ºC and VCC = 14.4 V, Min/Max values stated where TA= –40ºC to 85ºC and VCC = 3.8 V to 25 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Input voltage range SRP – SRN –0.20 0.25 V
Conversion time Single conversion 250 ms
Resolution (no missing codes) 16 Bits
Effective resolution Single conversion, signed 15 Bits
Offset error Post calibrated 10 µV
Offset error drift 0.3 0.5 µV/°C
Full-scale error –0.8% 0.2% 0.8%
Full-scale error drift 150 PPM/°C
Effective input resistance 2.5

7.18 VC1, VC2, VC3, VC4

Typical values stated where TA = 25ºC and VCC = 14.4 V, Min/Max values stated where TA= –40ºC to 85ºC and VCC = 3.8 V to 25 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIN Input voltage range VC4 – VC3, VC3 – VC2, VC2 – VC1, VC1 – VSS –0.20 8 V
Conversion time Single conversion 32 ms
Resolution (no missing codes) 16 Bits
Effective resolution Single conversion, signed 15 Bits
R(BAL) RDS(ON) for internal FET at VDS > 2 V VDS = VC4 – VC3, VC3 – VC2,
VC2 – VC1, VC1 – VSS
200 310 430 Ω
RDS(ON) for internal FET at VDS > 4 V VDS = VC4 – VC3, VC3 – VC2,
VC2 – VC1, VC1 – VSS
60 125 230

7.19 TS1, TS2

Typical values stated where TA = 25ºC and VCC = 14.4 V, Min/Max values stated where TA= –40ºC to 85ºC and VCC = 3.8 V to 25 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
R Internal Pull Up Resistor 16.5 17.5 19.0
RDRIFT Internal Pull Up Resistor Drift From 25°C 200 PPM/°C
RPAD Internal Pin Pad resistance 84 Ω
VIN Input voltage range TS1 – VSS, TS2 – VSS –0.20 0.8 × VREG25 V
Conversion Time 16 ms
Resolution (no missing codes) 16 Bits
Effective resolution 11 12 Bits

7.20 Internal Temperature Sensor

Typical values stated where TA = 25ºC and VCC = 14.4 V, Min/Max values stated where TA= –40ºC to 85ºC and VCC = 3.8 V to 25 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
V(TEMP) Temperature sensor voltage –1.9 –2.0 –2.1 mV/°C
Conversion Time 16 ms
Resolution (no missing codes) 16 Bits
Effective resolution 11 12 Bits

7.21 Internal Thermal Shutdown

Typical values stated where TA = 25ºC and VCC = 14.4 V, Min/Max values stated where TA= –40ºC to 85ºC and VCC = 3.8 V to 25 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
TMAX1 Maximum PCHG temperature 110 150 °C
TMAX2 Maximum REG33 temperature 125 175 °C
TRECOVER Recovery hysteresis temperature 10 °C
tPROTECT Protection time 5 µs

7.22 High Frequency Oscillator

Typical values stated where TA = 25ºC and VCC = 14.4 V, Min/Max values stated where TA= –40ºC to 85ºC and VCC = 3.8 V to 25 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
f(OSC) Operating frequency of CPU Clock 4.194 MHz
f(EIO) Frequency error(1)(2) TA = –20°C to 70°C –2% ±0.25% 2%
TA = –40°C to 85°C –3% ±0.25% 3%
t(SXO) Start-up time(3) TA = –25°C to 85°C 3 6 ms
(1) The frequency error is measured from 4.194 MHz.
(2) The frequency drift is included and measured from the trimmed frequency at VREG25 = 2.5 V, TA = 25°C.
(3) The startup time is defined as the time it takes for the oscillator output frequency to be ±3% when the device is already powered.

7.23 Low Frequency Oscillator

Typical values stated where TA = 25ºC and VCC = 14.4 V, Min/Max values stated where TA= –40ºC to 85ºC and VCC = 3.8 V to 25 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
f(LOSC) Operating frequency 32.768 kHz
f(LEIO) Frequency error(1)(3) TA = –20°C to 70°C –1.5% ±0.25% 1.5%
TA = –40°C to 85°C –2.5% ±0.25% 2.5%
t(LSXO) Start-up time(2) TA = –25°C to 85°C 100 μs
(1) The frequency drift is included and measured from the trimmed frequency at VCC = 2.5 V, TA = 25°C.
(2) The startup time is defined as the time it takes for the oscillator output frequency to be ±3%.
(3) The frequency error is measured from 32.768 kHz.

7.24 Internal Voltage Reference

Typical values stated where TA = 25ºC and VCC = 14.4 V, Min/Max values stated where TA= –40ºC to 85ºC and VCC = 3.8 V to 25 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VREF Internal Reference Voltage 1.215 1.225 1.230 V
VREF_DRIFT Internal Reference Voltage Drift TA = –25°C to 85°C ±80 PPM/°C
TA = 0°C to 60°C ±50

7.25 Flash

Typical values stated where TA = 25ºC and VCC = 14.4 V, Min/Max values stated where TA= –40ºC to 85ºC and VCC = 3.8 V to 25 V (unless otherwise noted)
PARAMETER(1) TEST CONDITIONS MIN TYP MAX UNIT
Data retention 10 Year
Flash programming write-cycles Data Flash 20k Cycle
Instruction Flash 1k
ICC(PROG_DF) Data Flash-write supply current TA = –40°C to 85°C 3 4 mA
ICC(ERASE_DF) Data Flash-erase supply current TA = –40°C to 85°C 3 18 mA
(1) Verified by design. Not production tested.

7.26 OCD Current Protection

Typical values stated where TA = 25ºC and VCC = 14.4 V, Min/Max values stated where TA= –40ºC to 85ºC and VCC = 3.8 V to 25 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
V(OCD) OCD detection threshold voltage range, typical RSNS = 0 50 200 mV
RSNS = 1 25 100
ΔV(OCDT) OCD detection threshold voltage program step RSNS = 0 10 mV
RSNS = 1 5
V(OFFSET) OCD offset –10 10 mV
V(Scale_Err) OCD scale error –10% 10%
t(OCDD) Over Current in Discharge Delay 1 31 ms
t(OCDD_STEP) OCDD Step options 2 ms
t(DETECT) Current fault detect time VSRP – SRN = VTHRESH + 12.5 mV 160 µs
tACC Over Current and Short Circuit delay time accuracy Accuracy of typical delay time –20% 20%

7.27 SCD1 Current Protection

Typical values stated where TA = 25ºC and VCC = 14.4 V, Min/Max values stated where TA= –40ºC to 85ºC and VCC = 3.8 V to 25 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
V(SDC1) SCD1 detection threshold voltage range, typical RSNS = 0 100 450 mV
RSNS = 1 50 225
ΔV(SCD1T) SCD1 detection threshold voltage program step RSNS = 0 50 mV
RSNS = 1 25
V(OFFSET) SCD1 offset –10 10 mV
V(Scale_Err) SCD1 scale error –10% 10%
t(SCD1D) Short Circuit in Discharge Delay AFE.STATE_CNTL[SCDDx2] = 0 0 915 µs
AFE.STATE_CNTL[SCDDx2] = 1 0 1830
t(SCD1D_STEP) SCD1D Step options AFE.STATE_CNTL[SCDDx2] = 0 61 µs
AFE.STATE_CNTL[SCDDx2] = 1 122
t(DETECT) Current fault detect time VSRP – SRN = VTHRESH + 12.5 mV 160 µs
tACC Over Current and Short Circuit delay time accuracy Accuracy of typical delay time –20% 20%

7.28 SCD2 Current Protection

Typical values stated where TA = 25ºC and VCC = 14.4 V, Min/Max values stated where TA= –40ºC to 85ºC and VCC = 3.8 V to 25 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
V(SDC2) SCD2 detection threshold voltage range, typical RSNS = 0 100 450 mV
RSNS = 1 50 225
ΔV(SCD2T) SCD2 detection threshold voltage program step RSNS = 0 50 mV
RSNS = 1 25
V(OFFSET) SCD2 offset –10 10 mV
V(Scale_Err) SCD2 scale error –10% 10%
t(SCD1D) Short Circuit in Discharge Delay AFE.STATE_CNTL[SCDDx2] = 0 0 458 µs
AFE.STATE_CNTL[SCDDx2] = 1 0 915
t(SCD2D_STEP) SCD2D Step options AFE.STATE_CNTL[SCDDx2] = 0 30.5 µs
AFE.STATE_CNTL[SCDDx2] = 1 61
t(DETECT) Current fault detect time VSRP – SRN = VTHRESH + 12.5 mV 160 µs
tACC Over Current and Short Circuit delay time accuracy Accuracy of typical delay time –20% 20%

7.29 SCC Current Protection

Typical values stated where TA = 25ºC and VCC = 14.4 V, Min/Max values stated where TA= –40ºC to 85ºC and VCC = 3.8 V to 25 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
V(SCCT) SCC detection threshold voltage range, typical RSNS = 0 –100 –300 mV
RSNS = 1 –50 –225
ΔV(SCCDT) SCC detection threshold voltage program step RSNS = 0 –50 mV
RSNS = 1 –25
V(OFFSET) SCC offset –10 10 mV
V(Scale_Err) SCC scale error –10% 10%
t(SCCD) Short Circuit in Charge Delay 0 915 ms
t(SCCD_STEP) SCCD Step options 61 ms
t(DETECT) Current fault detect time VSRP – SRN = VTHRESH + 12.5 mV 160 µs
tACC Over Current and Short Circuit delay time accuracy Accuracy of typical delay time –20% 20%

7.30 SBS Timing Requirements

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fSMB SMBus operating frequency Slave mode, SMBC 50% duty cycle 10 100 kHz
fMAS SMBus master clock frequency Master mode, no clock low slave extend 51.2 kHz
tBUF Bus free time between start and stop 4.7 µs
tHD:STA Hold time after (repeated) start 4.0 µs
tSU:STA Repeated start setup time 4.7 µs
tSU:STO Stop setup time 4.0 µs
tHD:DAT Data hold time 300 ns
tSU:DAT Data setup time 250 ns
tTIMEOUT Error signal/detect See(1) 25 35 ms
tLOW Clock low period 4.7 µs
tHIGH Clock high period See(2) Disabled
tHIGH Clock high period See(2) 4.0 50 µs
tLOW:SEXT Cumulative clock low slave extend time See(3) 25 ms
tLOW:MEXT Cumulative clock low master extend time See(4) 10 ms
tF Clock/data fall time See(5) 300 ns
tR Clock/data rise time See(6) 1000 ns
(1) The bq3050 times out when any clock low exceeds tTIMEOUT.
(2) tHIGH, Max, is the minimum bus idle time. SMBC = 1 for t > 50 µs causes reset of any transaction involving bq3050 that is in progress. This specification is valid when the THIGH_VAL=0. If THIGH_VAL = 1, then the value of THIGH is set by THIGH_1,2 and the timeout is not SMBus standard.
(3) tLOW:SEXT is the cumulative time a slave device is allowed to extend the clock cycles in one message from initial start to the stop.
(4) tLOW:MEXT is the cumulative time a master device is allowed to extend the clock cycles in one message from initial start to the stop.
(5) Rise time tR = VILMAX – 0.15) to (VIHMIN + 0.15)
(6) Fall time tF = 0.9 VDD to (VILMAX – 0.15)
bq3050 SMBusTiming.gifFigure 1. SMBus Timing Diagram

7.31 Typical Characteristics

bq3050 C004_SLUSA92.png
Figure 2. CC Input Offset Drift Overtemperature
bq3050 C005_SLUSA92.png
Figure 3. ADC Input Offset Drift Overtemperature