JAJSVS1A June   2024  – September 2024 BQ51013C-Q1

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. 概要 (続き)
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Details of a Qi Wireless Power System and BQ51013C-Q1 Power Transfer Flow Diagrams
      2. 8.3.2  Dynamic Rectifier Control
      3. 8.3.3  Dynamic Efficiency Scaling
      4. 8.3.4  RILIM Calculations
      5. 8.3.5  Input Overvoltage
      6. 8.3.6  Adapter Enable Functionality and EN1/EN2 Control
      7. 8.3.7  End Power Transfer Packet (WPC Header 0x02)
      8. 8.3.8  Status Outputs
      9. 8.3.9  WPC Communication Scheme
      10. 8.3.10 Communication Modulator
      11. 8.3.11 Adaptive Communication Limit
      12. 8.3.12 Synchronous Rectification
      13. 8.3.13 Temperature Sense Resistor Network (TS)
      14. 8.3.14 3-State Driver Recommendations for the TS/CTRL Pin
      15. 8.3.15 Thermal Protection
      16. 8.3.16 WPC v2.0 Compliance – Foreign Object Detection
      17. 8.3.17 Receiver Coil Load-Line Analysis
    4. 8.4 Device Functional Modes
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 BQ51013C-Q1 Wireless Power Receiver Used as a Power Supply
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Using The BQ51013C-Q1 as a Wireless Power Supply: (See Figure 1-1 )
          2. 9.2.1.2.2 Series and Parallel Resonant Capacitor Selection
          3. 9.2.1.2.3 Recommended RX Coils
          4. 9.2.1.2.4 COMM, CLAMP, and BOOT Capacitors
          5. 9.2.1.2.5 Control Pins and CHG
          6. 9.2.1.2.6 Current Limit and FOD
          7. 9.2.1.2.7 RECT and OUT Capacitance
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Dual Power Path: Wireless Power and DC Input
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
        3. 9.2.2.3 Application Curves
      3. 9.2.3 Wireless and Direct Charging of a Li-Ion Battery at 800 mA
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Detailed Design Procedure
        3. 9.2.3.3 Application Curves
  11. 10Power Supply Recommendations
  12. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  13. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 サード・パーティ製品に関する免責事項
      2. 12.1.2 Development Support
    2. 12.2 ドキュメントの更新通知を受け取る方法
    3. 12.3 サポート・リソース
    4. 12.4 Trademarks
    5. 12.5 静電気放電に関する注意事項
    6. 12.6 用語集
  14. 13Revision History
  15. 14Mechanical, Packaging, and Orderable Information

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • RHL|20
サーマルパッド・メカニカル・データ
発注情報

Typical Characteristics

BQ51013C-Q1 Rectifier Efficiency
Input: RX AC powerOutput: RX RECT power
Efficiency: Output Power / Input Power
Figure 7-1 Rectifier Efficiency
BQ51013C-Q1 Light Load System
                        Efficiency Improvement Due to Dynamic Efficiency Scaling Feature (1)
Input: TX DC powerOutput: RX RECT power
Plot: Output Power / Input Power
Figure 7-3 Light Load System Efficiency Improvement Due to Dynamic Efficiency Scaling Feature (1)
BQ51013C-Q1 Impact of Maximum Current setting (RILIM) on Rectifier Voltage
                            (VRECT)
RILIM = 250 Ω and 750 Ω
Figure 7-5 Impact of Maximum Current setting (RILIM) on Rectifier Voltage (VRECT)
BQ51013C-Q1 Impact of Load Current on Output Ripple
COUT = 1 µfWithout Communication
Figure 7-7 Impact of Load Current on Output Ripple
BQ51013C-Q1 1-A
                        Instantaneous Load Dump (2)
Figure 7-9 1-A Instantaneous Load Dump (2)
BQ51013C-Q1 1-A
                        Load Dump Full System Response
Figure 7-11 1-A Load Dump Full System Response
BQ51013C-Q1 TS
                        Fault
Figure 7-13 TS Fault
BQ51013C-Q1 Adapter Insertion (VAD = 10 V) Illustrating Break-Before-Make
                        Operation
Figure 7-15 Adapter Insertion (VAD = 10 V) Illustrating Break-Before-Make Operation
BQ51013C-Q1 BQ51013C-Q1 Typical Start-Up With a 1-A System Load
Figure 7-17 BQ51013C-Q1 Typical Start-Up With a 1-A System Load
BQ51013C-Q1 Adaptive Communication Limit Event Where the Current Limit is
                            IOUT + 50 mA (IOUT-DC > 300 mA)
Figure 7-19 Adaptive Communication Limit Event Where the Current Limit is IOUT + 50 mA (IOUT-DC > 300 mA)
BQ51013C-Q1 System Efficiency From DC Input to DC Output
Input: TX DC powerOutput: RX RECT power
Efficiency: Output Power / Input Power
Figure 7-2 System Efficiency From DC Input to DC Output
BQ51013C-Q1 Impact of Load Current ( ILOAD) on Rectifier Voltage
                            (VRECT)
RILIM = 250 Ω
Figure 7-4 Impact of Load Current ( ILOAD) on Rectifier Voltage (VRECT)
BQ51013C-Q1 Impact of Load Current on Output Voltage
Maximum Current = 1 A
Figure 7-6 Impact of Load Current on Output Voltage
BQ51013C-Q1 VOUT vs Temperature
Figure 7-8 VOUT vs Temperature
BQ51013C-Q1 1-A
                        Load Step Full System Response
Figure 7-10 1-A Load Step Full System Response
BQ51013C-Q1 Rectifier Overvoltage Clamp (fop = 110 kHz)
Figure 7-12 Rectifier Overvoltage Clamp (fop = 110 kHz)
BQ51013C-Q1 Adapter Insertion (VAD = 10 V)
Figure 7-14 Adapter Insertion (VAD = 10 V)
BQ51013C-Q1 On-the-Go Enabled (VOTG = 3.5 V) (3)
Figure 7-16 On-the-Go Enabled (VOTG = 3.5 V) (3)
BQ51013C-Q1 Adaptive Communication Limit Event Where the 400-mA Current Limit is
                        Enabled (IOUT-DC < 300 mA)
Figure 7-18 Adaptive Communication Limit Event Where the 400-mA Current Limit is Enabled (IOUT-DC < 300 mA)
BQ51013C-Q1 RX
                        Communication Packet Structure
Figure 7-20 RX Communication Packet Structure
  1. Efficiency measured from DC input to the transmitter to DC output of the receiver. The BQ500210EVM-689 TX was used for these measurements. Measurement subject to change if an alternate TX is used.
  2. Total droop experienced at the output is dependent on receiver coil design. The output impedance must be low enough at that particular operating frequency in order to not collapse the rectifier below 5 V.
  3. On-the-go mode is enabled by driving EN1 high. In this test, the external PMOS is connected between the output of the BQ51013C-Q1 device and the AD pin; therefore, any voltage source on the output is supplied to the AD pin.