JAJSOS2B February   2021  – September 2022 CC2652PSIP

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 説明
  4. Functional Block Diagram
  5. Revision History
  6. Device Comparison
  7. Terminal Configuration and Functions
    1. 7.1 Pin Diagram
    2. 7.2 Signal Descriptions – SIP Package
    3. 7.3 Connections for Unused Pins and Modules
  8. Specifications
    1. 8.1  Absolute Maximum Ratings
    2. 8.2  ESD Ratings
    3. 8.3  Recommended Operating Conditions
    4. 8.4  Power Supply and Modules
    5. 8.5  Power Consumption - Power Modes
    6. 8.6  Power Consumption - Radio Modes
    7. 8.7  Nonvolatile (Flash) Memory Characteristics
    8. 8.8  Thermal Resistance Characteristics
    9. 8.9  RF Frequency Bands
    10. 8.10 Bluetooth Low Energy - Receive (RX)
    11. 8.11 Bluetooth Low Energy - Transmit (TX)
    12. 8.12 Zigbee and Thread - IEEE 802.15.4-2006 2.4 GHz (OQPSK DSSS1:8, 250 kbps) - RX
    13. 8.13 Zigbee and Thread - IEEE 802.15.4-2006 2.4 GHz (OQPSK DSSS1:8, 250 kbps) - TX
    14. 8.14 Timing and Switching Characteristics
      1. 8.14.1 Reset Timing
      2. 8.14.2 Wakeup Timing
      3. 8.14.3 Clock Specifications
        1. 8.14.3.1 48 MHz Crystal Oscillator (XOSC_HF)
        2. 8.14.3.2 48 MHz RC Oscillator (RCOSC_HF)
        3. 8.14.3.3 2 MHz RC Oscillator (RCOSC_MF)
        4. 8.14.3.4 32.768 kHz Crystal Oscillator (XOSC_LF)
        5. 8.14.3.5 32 kHz RC Oscillator (RCOSC_LF)
      4. 8.14.4 Synchronous Serial Interface (SSI) Characteristics
        1. 8.14.4.1 Synchronous Serial Interface (SSI) Characteristics
        2.       36
      5. 8.14.5 UART
        1.       38
    15. 8.15 Peripheral Characteristics
      1. 8.15.1 ADC
        1.       Analog-to-Digital Converter (ADC) Characteristics
      2. 8.15.2 DAC
        1. 8.15.2.1 Digital-to-Analog Converter (DAC) Characteristics
      3. 8.15.3 Temperature and Battery Monitor
        1. 8.15.3.1 Temperature Sensor
        2. 8.15.3.2 Battery Monitor
      4. 8.15.4 Comparators
        1. 8.15.4.1 Low-Power Clocked Comparator
        2. 8.15.4.2 Continuous Time Comparator
      5. 8.15.5 Current Source
        1. 8.15.5.1 Programmable Current Source
      6. 8.15.6 GPIO
        1. 8.15.6.1 GPIO DC Characteristics
    16. 8.16 Typical Characteristics
      1. 8.16.1 MCU Current
      2. 8.16.2 RX Current
      3. 8.16.3 TX Current
      4. 8.16.4 RX Performance
      5. 8.16.5 TX Performance
      6. 8.16.6 ADC Performance
  9. Detailed Description
    1. 9.1  Overview
    2. 9.2  System CPU
    3. 9.3  Radio (RF Core)
      1. 9.3.1 Bluetooth 5.2 Low Energy
      2. 9.3.2 802.15.4 (Thread, Zigbee, 6LoWPAN)
    4. 9.4  Memory
    5. 9.5  Sensor Controller
    6. 9.6  Cryptography
    7. 9.7  Timers
    8. 9.8  Serial Peripherals and I/O
    9. 9.9  Battery and Temperature Monitor
    10. 9.10 µDMA
    11. 9.11 Debug
    12. 9.12 Power Management
    13. 9.13 Clock Systems
    14. 9.14 Network Processor
    15. 9.15 Device Certification and Qualification
      1. 9.15.1 FCC Certification and Statement
      2. 9.15.2 IC/ISED Certification and Statement
      3. 9.15.3 ETSI/CE Certification
      4. 9.15.4 UK Certification
    16. 9.16 Module Markings
    17. 9.17 End Product Labeling
    18. 9.18 Manual Information to the End User
  10. 10Application, Implementation, and Layout
    1. 10.1 Application Information
      1. 10.1.1 Typical Application Circuit
    2. 10.2 Device Connection and Layout Fundamentals
      1. 10.2.1 Reset
      2. 10.2.2 Unused Pins
    3. 10.3 PCB Layout Guidelines
      1. 10.3.1 General Layout Recommendations
      2. 10.3.2 RF Layout Recommendations
        1. 10.3.2.1 Antenna Placement and Routing
        2. 10.3.2.2 Transmission Line Considerations
    4. 10.4 Reference Designs
  11. 11Environmental Requirements and SMT Specifications
    1. 11.1 PCB Bending
    2. 11.2 Handling Environment
      1. 11.2.1 Terminals
      2. 11.2.2 Falling
    3. 11.3 Storage Condition
      1. 11.3.1 Moisture Barrier Bag Before Opened
      2. 11.3.2 Moisture Barrier Bag Open
    4. 11.4 PCB Assembly Guide
      1. 11.4.1 PCB Land Pattern & Thermal Vias
      2. 11.4.2 SMT Assembly Recommendations
      3. 11.4.3 PCB Surface Finish Requirements
      4. 11.4.4 Solder Stencil
      5. 11.4.5 Package Placement
      6. 11.4.6 Solder Joint Inspection
      7. 11.4.7 Rework and Replacement
      8. 11.4.8 Solder Joint Voiding
    5. 11.5 Baking Conditions
    6. 11.6 Soldering and Reflow Condition
  12. 12Device and Documentation Support
    1. 12.1 Device Nomenclature
    2. 12.2 Tools and Software
      1. 12.2.1 SimpleLink™ Microcontroller Platform
    3. 12.3 Documentation Support
    4. 12.4 サポート・リソース
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information
    1. 13.1 Packaging Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Power Management

To minimize power consumption, the CC2652PSIP supports a number of power modes and power management features (see Table 9-1).

Table 9-1 Power Modes
MODESOFTWARE CONFIGURABLE POWER MODESRESET PIN HELD
ACTIVEIDLESTANDBYSHUTDOWN
CPUActiveOffOffOffOff
FlashOnAvailableOffOffOff
SRAMOnOnRetentionOffOff
Supply SystemOnOnDuty CycledOffOff
Register and CPU retentionFullFullPartialNoNo
SRAM retentionFullFullFullNoNo
48 MHz high-speed clock (SCLK_HF)XOSC_HF or
RCOSC_HF
XOSC_HF or
RCOSC_HF
OffOffOff
2 MHz medium-speed clock (SCLK_MF)RCOSC_MFRCOSC_MFAvailableOffOff
32 kHz low-speed clock (SCLK_LF)XOSC_LF or
RCOSC_LF
XOSC_LF or
RCOSC_LF
XOSC_LF or RCOSC_LFOffOff
PeripheralsAvailableAvailableOffOffOff
Sensor ControllerAvailableAvailableAvailableOffOff
Wake-up on RTCAvailableAvailableAvailableOffOff
Wake-up on pin edgeAvailableAvailableAvailableAvailableOff
Wake-up on reset pinOnOnOnOnOn
Brownout detector (BOD)OnOnDuty CycledOffOff
Power-on reset (POR)OnOnOnOffOff
Watchdog timer (WDT)AvailableAvailablePausedOffOff

 

In Active mode, the application system CPU is actively executing code. Active mode provides normal operation of the processor and all of the peripherals that are currently enabled. The system clock can be any available clock source (see Table 9-1).

In Idle mode, all active peripherals can be clocked, but the Application CPU core and memory are not clocked and no code is executed. Any interrupt event brings the processor back into active mode.

In Standby mode, only the always-on (AON) domain is active. An external wake-up event, RTC event, or Sensor Controller event is required to bring the device back to active mode. MCU peripherals with retention do not need to be reconfigured when waking up again, and the CPU continues execution from where it went into standby mode. All GPIOs are latched in standby mode.

In Shutdown mode, the device is entirely turned off (including the AON domain and Sensor Controller), and the I/Os are latched with the value they had before entering shutdown mode. A change of state on any I/O pin defined as a wake from shutdown pin wakes up the device and functions as a reset trigger. The CPU can differentiate between reset in this way and reset-by-reset pin or power-on reset by reading the reset status register. The only state retained in this mode is the latched I/O state and the flash memory contents.

The Sensor Controller is an autonomous processor that can control the peripherals in the Sensor Controller independently of the system CPU. This means that the system CPU does not have to wake up, for example to perform an ADC sampling or poll a digital sensor over SPI, thus saving both current and wake-up time that would otherwise be wasted. The Sensor Controller Studio tool enables the user to program the Sensor Controller, control its peripherals, and wake up the system CPU as needed. All Sensor Controller peripherals can also be controlled by the system CPU.

Note:

The power, RF and clock management for the CC2652PSIP device require specific configuration and handling by software for optimized performance. This configuration and handling is implemented in the TI-provided drivers that are part of the CC2652PSIP software development kit (SDK). Therefore, TI highly recommends using this software framework for all application development on the device. The complete SDK with TI-RTOS (optional), device drivers, and examples are offered free of charge in source code.