SCAS886E August   2009  – December 2015 CDCLVP1212

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics: LVCMOS Input
    6. 7.6  Electrical Characteristics: Differential Input
    7. 7.7  Electrical Characteristics: LVPECL Output, At VCC = 2.375 V to 2.625 V
    8. 7.8  Electrical Characteristics: LVPECL Output, at VCC = 3.0 V to 3.6 V
    9. 7.9  Pin Characteristics
    10. 7.10 Timing Requirements
    11. 7.11 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1 Test Configurations
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
    4. 9.4 Device Functional Modes
      1. 9.4.1 LVPECL Output Termination
      2. 9.4.2 Input Termination
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Fanout Buffer for Line Card Application
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
        3. 10.2.1.3 Application Curves
  11. 11Power Supply Recommendations
    1. 11.1 Thermal Management
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
    3. 12.3 Thermal Considerations
  13. 13Device and Documentation Support
    1. 13.1 Community Resources
    2. 13.2 Trademarks
    3. 13.3 Electrostatic Discharge Caution
    4. 13.4 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
VCC Supply voltage range(2) –0.5 4.6 V
VIN Input voltage range (3) –0.5 VCC + 0.5 V
VOUT Output voltage range (3) –0.5 VCC + 0.5 V
IIN Input current 20 mA
IOUT Output current 50 mA
TA Specified free-air temperature range (no airflow) –40 85 °C
Tstg Storage temperature range –65 150 °C
TJ Maximum junction temperature 125 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All supply voltages must be supplied simultaneously.
(3) The input and output negative voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

7.2 ESD Ratings

MIN MAX UNIT
V(ESD)(1) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(2) 2000 V
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges in to the device.
(2) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN TYP MAX UNIT
VCC Supply voltage 2.375 2.50/3.30 3.60 V
TA Ambient temperature –40 85 °C
TPCB PCB temperature (measured at thermal pad) 105 °C

7.4 Thermal Information

THERMAL METRIC(1)(2)(3) VALUE UNIT
RθJA Thermal resistance, junction-to-ambient 0 LFM 36.1 (5) °C/W
150 LFM 30.2 (5)
400 LFM 28.2 (5)
RθJC(top) Junction-to-case (top) thermal resistance 23.7 °C/W
RθJP(4) Thermal resistance, junction-to-pad 3.58 °C/W
ψJT Junction-to-top characterization parameter 0.5 °C/W
ψJB Junction-to-board characterization parameter 10.0 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 3.8 °C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953).
(2) The package thermal resistance is calculated in accordance with JESD 51 and JEDEC 2S2P (high-K board).
(3) Connected to GND with 16 thermal vias (0.3-mm diameter).
(4) θJP (junction-to-pad) is used for the QFN package, because the primary heat flow is from the junction to the GND pad of the QFN package.
(5) 4 x 4 vias on Pad

7.5 Electrical Characteristics: LVCMOS Input

at VCC = 2.375 V to 3.6 V and TA = –40°C to 85°C and TPCB ≤ 105°C (unless otherwise noted) (1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fIN Input frequency 200 MHz
Vth Input threshold voltage External threshold voltage applied to complementary input 1.1 1.8 V
VIH Input high voltage Vth + 0.1 VCC V
VIL Input low voltage 0 Vth – 0.1 V
IIH Input high current VCC = 3.6 V, VIH = 3.6 V 40 μA
IIL Input low current VCC = 3.6 V, VIL = 0 V –40 μA
ΔV/ΔT Input edge rate 20% to 80% 1.5 V/ns
ICAP Input capacitance 5 pF
(1) Figure 6 and Figure 7 show DC test setup.

7.6 Electrical Characteristics: Differential Input

at VCC = 2.375 V to 3.6 V and TA = –40°C to 85°C and TPCB ≤ 105°C (unless otherwise noted)(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fIN Input frequency Clock input 2000 MHz
VIN, DIFF, PP Differential input peak-peak voltage fIN ≤ 1.5 GHz 0.1 1.5 V
1.5 GHz ≤ fIN ≤ 2 GHz 0.2 1.5 V
VICM Input common-mode level 1.0 VCC – 0.3 V
IIH Input high current VCC = 3.6 V, VIH = 3.6 V 40 μA
IIL Input low current VCC = 3.6 V, VIL = 0 V –40 μA
ΔV/ΔT Input edge rate 20% to 80% 1.5 V/ns
ICAP Input capacitance 5 pF
(1) Figure 5 and Figure 8 show DC test setup. Figure 9 shows AC test setup.

7.7 Electrical Characteristics: LVPECL Output, At VCC = 2.375 V to 2.625 V

TA = –40°C to 85°C and TPCB ≤ 105°C (unless otherwise noted) (1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VOH Output high voltage TA ≤ 85°C VCC – 1.26 VCC – 0.9 V
TPCB ≤ 105°C VCC -–1.26 VCC – 0.83
VOL Output low voltage TA ≤ 85°C VCC – 1.7 VCC – 1.3 V
TPCB ≤ 105°C VCC – 1.7 VCC – 1.25
VOUT, DIFF, PP Differential output peak-peak voltage fIN ≤ 2 GHz 0.5 1.35 V
fIN = 125 MHz, 312.5 MHz 1.15
VAC_REF Input bias voltage(2) IAC_REF = 2 mA VCC – 1.6 VCC – 1.1 V
tPD Propagation delay VIN, DIFF, PP = 0.1 V 550 ps
VIN, DIFF, PP = 0.3 V 550 ps
tSK,PP Part-to-part skew 150 ps
tSK,O Output skew 25 ps
tSK,P Pulse skew (with 50% duty cycle input) Crossing-point-to-crossing-point distortion, fOUT = 100 MHz –50 50 ps
tRJIT Random additive jitter (with 50% duty cycle input)(7) fOUT = 100 MHz, VIN,SE = VCC, Vth = 1.25 V, 10 kHz to 20 MHz 0.11 ps, RMS
fOUT = 100 MHz, VIN,SE = 0.9 V,
Vth = 1.1 V, 10 kHz to 20 MHz
0.128 ps, RMS
fOUT = 2 GHz, VIN,DIFF,PP = 0.2 V,
VICM = 1 V, 10 kHz to 20 MHz
0.053 ps, RMS
fOUT = 100 MHz, VIN,DIFF,PP = 0.15 V,
VICM = 1 V, 10 kHz to 20 MHz
0.093 ps, RMS
fOUT = 100 MHz, VIN,DIFF,PP = 1 V,
VICM = 1 V, 10 kHz to 20 MHz
0.092 ps, RMS
fOUT = 122.88 MHz,(3)(6)
Square Wave, VIN-PP = 1 V,
12 kHz to 20 MHz
0.057 0.088 ps, RMS
fOUT = 122.88 MHz,(3)(6)
Square Wave, VIN-PP = 1 V,
10 kHz to 20 MHz
0.057 0.088 ps, RMS
fOUT = 122.88 MHz,(3)(6)
Square Wave, VIN-PP = 1 V,
1 kHz to 40 MHz
0.086 0.121 ps, RMS
fOUT = 156.25 MHz,(6)(4)
Square Wave, VIN-PP = 1 V,
12 kHz to 20 MHz
0.048 0.071 ps, RMS
fOUT = 156.25 MHz,(6)(4)
Square Wave, VIN-PP = 1 V,
10 kHz to 20 MHz
0.048 0.071 ps, RMS
fOUT = 156.25 MHz,(6)(4)
Square Wave, VIN-PP = 1 V,
1 kHz to 40 MHz
0.068 0.097 ps, RMS
fOUT = 312.5 MHz,(6)(5)
Square Wave, VIN-PP = 1 V,
12 kHz to 20 MHz
0.030 0.048 ps, RMS
fOUT = 312.5 MHz,(6)(5)
Square Wave, VIN-PP = 1 V,
10 kHz to 20 MHz
0.030 0.048 ps, RMS
fOUT = 312.5 MHz,(6)(5)
Square Wave, VIN-PP = 1 V,
1 kHz to 40 MHz
0.045 0.068 ps, RMS
tR/tF Output rise/fall time 20% to 80% 200 ps
IEE Supply internal current Outputs unterminated
TA ≤ 85°C
88 mA
Outputs unterminated
TPCB ≤ 105°C
89
ICC Output and internal supply current All outputs terminated,
50 Ω to VCC – 2
TA ≤ 85°C
468 mA
All outputs terminated,
50 Ω to VCC – 2
TPCB ≤ 105°C
516
(1) Figure 10 and Figure 11 show DC and AC test setup.
(2) Internally generated bias voltage (VAC_REF) is for 3.3 V operation only. It is recommended to apply externally generated bias voltage for V CC < 3.0 V.
(3) Input source: 122.88-MHz Rohde & Schwarz SMA100A Signal Generator.
(4) Input source: 156.25-MHz Rohde & Schwarz SMA100A Signal Generator.
(5) Input source: 312.5-MHz Rohde & Schwarz SMA100A Signal Generator.
(6) Input source RMS Jitter (tRJIT_IN) and Total RMS Jitter (tRJIT_OUT) measured using Agilent E5052 Phase Noise Analyzer. Buffer device random additive jitter computed as: tRJIT = SQRT[(tRJIT_OUT)2 - (tRJIT_IN)2].
(7) Parameter is specified by characterization. Not tested in production.

7.8 Electrical Characteristics: LVPECL Output, at VCC = 3.0 V to 3.6 V

TA = –40°C to 85°C and TPCB ≤ 105°C (unless otherwise noted) (1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VOH Output high voltage TA ≤ 85°C VCC – 1.26 VCC – 0.9 V
TPCB ≤ 105°C VCC – 1.26 VCC – 0.85
VOL Output low voltage TA ≤ 85°C VCC – 1.7 VCC – 1.3 V
TPCB ≤ 105°C VCC – 1.7 VCC – 1.3
VOUT, DIFF, PP Differential output peak-peak voltage fIN ≤ 2 GHz 0.65 1.35 V
VAC_REF Input bias voltage IAC_REF = 2 mA VCC – 1.6 VCC – 1.1 V
tPD Propagation delay VIN, DIFF, PP = 0.1 V 550 ps
VIN, DIFF, PP = 0.3 V 550 ps
tSK,PP Part-to-part skew 150 ps
tSK,O Output skew 25 ps
tSK,P Pulse skew (with 50% duty cycle input) Crossing-point-to-crossing-point distortion, fOUT = 100 MHz –50 50 ps
tRJIT Random additive jitter (with 50% duty cycle input)(6) fOUT = 100 MHz, VIN,SE = VCC, Vth = 1.65 V, 10 kHz to 20 MHz 0.101 ps, RMS
fOUT = 100 MHz, VIN,SE = 0.9 V,
Vth = 1.1 V, 10 kHz to 20 MHz
0.130 ps, RMS
fOUT = 2 GHz, VIN,DIFF,PP = 0.2 V,
VICM = 1 V, 10 kHz to 20 MHz
0.069 ps, RMS
fOUT = 100 MHz, VIN,DIFF,PP = 0.15 V,
VICM = 1 V, 10 kHz to 20 MHz
0.094 ps, RMS
fOUT = 100 MHz, VIN,DIFF,PP = 1 V,
VICM = 1 V, 10 kHz to 20 MHz
0.094 ps, RMS
fOUT = 122.88 MHz,(2)(5)
Square Wave, VIN-PP = 1 V,
12 kHz to 20 MHz
0.057 ps, RMS
fOUT = 122.88 MHz,(2)(5)
Square Wave, VIN-PP = 1 V,
10 kHz to 20 MHz
0.057 ps, RMS
fOUT= 122.88 MHz,(2)(5)
Square Wave, VIN-PP = 1 V,
1 kHz to 40 MHz
0.086 ps, RMS
fOUT = 156.25 MHz,(5)(3)
Square Wave, VIN-PP = 1 V,
12 kHz to 20 MHz
0.048 ps, RMS
fOUT = 156.25 MHz,(5)(3)
Square Wave, VIN-PP = 1 V,
10 kHz to 20 MHz
0.048 ps, RMS
fOUT = 156.25 MHz,(5)(3)
Square Wave, VIN-PP = 1 V,
1 kHz to 40 MHz
0.068 ps, RMS
fOUT = 312.5 MHz,(5)(4)
Square Wave, VIN-PP = 1 V,
12 kHz to 20 MHz
0.030 ps, RMS
fOUT = 312.5 MHz,(5)(4)
Square Wave, VIN-PP = 1 V,
10 kHz to 20 MHz
0.030 ps, RMS
fOUT = 312.5 MHz,(5)(4)
Square Wave, VIN-PP = 1 V,
1 kHz to 40 MHz
0.045 ps, RMS
tR/tF Output rise/fall time 20% to 80% 200 ps
IEE Supply internal current Outputs unterminated
TA ≤ 85°C
88 mA
TPCB ≤ 105°C 89
ICC Output and internal supply current All outputs terminated,
50 Ω to VCC – 2
TA ≤ 85°C
468 mA
All outputs terminated,
50 Ω to VCC – 2
TPCB ≤ 105°C
516
(1) Figure 10 and Figure 11 show DC and AC test setup.
(2) Input source: 122.88-MHz Rohde & Schwarz SMA100A Signal Generator.
(3) Input source: 156.25-MHz Rohde & Schwarz SMA100A Signal Generator.
(4) Input source: 312.5-MHz Rohde & Schwarz SMA100A Signal Generator.
(5) Input source RMS Jitter (tRJIT_IN) and Total RMS Jitter (tRJIT_OUT) measured using Agilent E5052 Phase Noise Analyzer. Buffer device random additive jitter computed as: tRJIT = SQRT[(tRJIT_OUT)2 - (tRJIT_IN)2].
(6) Parameter is specified by characterization. Not tested in production.

7.9 Pin Characteristics

PARAMETER MIN TYP MAX UNIT
RPULLDOWN Input pulldown resistor 150

7.10 Timing Requirements

CDCLVP1212 ai_vo_tr_tf_cas877.gif Figure 1. Output Voltage and Rise/Fall Time
CDCLVP1212 ai_vo_skew_cas886.gif
1. Output skew is calculated as the greater of the following: As the difference between the fastest and the slowest tPLHn (n = 0, 1, 2....11), or as the difference between the fastest and the slowest tPHLn (n = 0, 1, 2....11).
2. Part-to-part skew is calculated as the greater of the following: As the difference between the fastest and the slowest tPLHn (n = 0, 1, 2....11) across multiple devices, or the difference between the fastest and the slowest tPHLn (n = 0, 1, 2....11) across multiple devices.
Figure 2. Output and Part-To-Part Skew

7.11 Typical Characteristics

at TA = –40°C to 85°C (unless otherwise noted)
CDCLVP1212 tc_fqcy_diff_vout_swing01_cas877.gif
Figure 3. Differential Output Peak-To-Peak Voltage Vs Frequency
CDCLVP1212 tc_fqcy_diff_vout_swing02_cas877.gif
Figure 4. Differential Output Peak-To-Peak Voltage Vs Frequency