JAJSRM3 November   2023 DAC530A2W , DAC532A3W

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Electrical Characteristics: Voltage Output
    6. 5.6  Electrical Characteristics: Current Output
    7. 5.7  Electrical Characteristics: Comparator Mode
    8. 5.8  Electrical Characteristics: General
    9. 5.9  Timing Requirements: I2C Standard Mode
    10. 5.10 Timing Requirements: I2C Fast Mode
    11. 5.11 Timing Requirements: I2C Fast-Mode Plus
    12. 5.12 Timing Requirements: SPI Write Operation
    13. 5.13 Timing Requirements: SPI Read and Daisy Chain Operation (FSDO = 0)
    14. 5.14 Timing Requirements: SPI Read and Daisy Chain Operation (FSDO = 1)
    15. 5.15 Timing Requirements: GPIO
    16. 5.16 Timing Diagrams
    17. 5.17 Typical Characteristics: Voltage Output
    18. 5.18 Typical Characteristics: Current Output
    19. 5.19 Typical Characteristics: Comparator
    20. 5.20 Typical Characteristics: General
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Smart Digital-to-Analog Converter (DAC) Architecture
      2. 6.3.2 Digital Input/Output
      3. 6.3.3 Nonvolatile Memory (NVM)
    4. 6.4 Device Functional Modes
      1. 6.4.1 Voltage-Output Mode
        1. 6.4.1.1 Voltage Reference and DAC Transfer Function
          1. 6.4.1.1.1 Internal Reference
          2. 6.4.1.1.2 Power-Supply as Reference
      2. 6.4.2 Current-Output Mode
      3. 6.4.3 Comparator Mode
        1. 6.4.3.1 Programmable Hysteresis Comparator
        2. 6.4.3.2 Programmable Window Comparator
      4. 6.4.4 Fault-Dump Mode
      5. 6.4.5 Application-Specific Modes
        1. 6.4.5.1 Voltage Margining and Scaling
          1. 6.4.5.1.1 High-Impedance Output and PROTECT Input
          2. 6.4.5.1.2 Programmable Slew-Rate Control
        2. 6.4.5.2 Function Generation
          1. 6.4.5.2.1 Triangular Waveform Generation
          2. 6.4.5.2.2 Sawtooth Waveform Generation
          3. 6.4.5.2.3 Sine Waveform Generation
      6. 6.4.6 Device Reset and Fault Management
        1. 6.4.6.1 Power-On Reset (POR)
        2. 6.4.6.2 External Reset
        3. 6.4.6.3 Register-Map Lock
        4. 6.4.6.4 NVM Cyclic Redundancy Check (CRC)
          1. 6.4.6.4.1 NVM-CRC-FAIL-USER Bit
          2. 6.4.6.4.2 NVM-CRC-FAIL-INT Bit
      7. 6.4.7 General-Purpose Input/Output (GPIO) Modes
    5. 6.5 Programming
      1. 6.5.1 SPI Programming Mode
      2. 6.5.2 I2C Programming Mode
        1. 6.5.2.1 F/S Mode Protocol
        2. 6.5.2.2 I2C Update Sequence
          1. 6.5.2.2.1 Address Byte
          2. 6.5.2.2.2 Command Byte
        3. 6.5.2.3 I2C Read Sequence
  8. Register Map
    1. 7.1  NOP Register (address = 00h) [reset = 0000h]
    2. 7.2  DAC-0-MARGIN-HIGH Register (address = 0Dh) [reset = 0000h]
    3. 7.3  DAC-1-MARGIN-HIGH Register (address = 13h) [reset = 0000h]
    4. 7.4  DAC-2-MARGIN-HIGH Register (address = 01h) [reset = 0000h]
    5. 7.5  DAC-0-MARGIN-LOW Register (address = 0Eh) [reset = 0000h]
    6. 7.6  DAC-1-MARGIN-LOW Register (address = 14h) [reset = 0000h]
    7. 7.7  DAC-2-MARGIN-LOW Register (address = 02h) [reset = 0000h]
    8. 7.8  DAC-0-GAIN-CONFIG Register (address = 0Fh) [reset = 0000h]
    9. 7.9  DAC-1-GAIN-CMP-CONFIG Register (address = 15h) [reset = 0000h]
    10. 7.10 DAC-2-GAIN-CONFIG Register (address = 03h) [reset = 0000h]
    11. 7.11 DAC-1-CMP-MODE-CONFIG Register (address = 17h) [reset = 0000h]
    12. 7.12 DAC-0-FUNC-CONFIG Register (address = 12h) [reset = 0000h]
    13. 7.13 DAC-1-FUNC-CONFIG Register (address = 18h) [reset = 0000h]
    14. 7.14 DAC-2-FUNC-CONFIG Register (address = 06h) [reset = 0000h]
    15. 7.15 DAC-0-DATA Register (address = 1Bh) [reset = 0000h]
    16. 7.16 DAC-1-DATA Register (address = 1Ch) [reset = 0000h]
    17. 7.17 DAC-2-DATA Register (address = 19h) [reset = 0000h]
    18. 7.18 COMMON-CONFIG Register (address = 1Fh) [reset = 0FFFh]
    19. 7.19 COMMON-TRIGGER Register (address = 20h) [reset = 0000h]
    20. 7.20 COMMON-DAC-TRIG Register (address = 21h) [reset = 0000h]
    21. 7.21 GENERAL-STATUS Register (address = 22h) [reset = 20h, DEVICE-ID, VERSION-ID]
    22. 7.22 CMP-STATUS Register (address = 23h) [reset = 000Ch]
    23. 7.23 GPIO-CONFIG Register (address = 24h) [reset = 0000h]
    24. 7.24 DEVICE-MODE-CONFIG Register (address = 25h) [reset = 0000h]
    25. 7.25 INTERFACE-CONFIG Register (address = 26h) [reset = 0000h]
    26. 7.26 SRAM-CONFIG Register (address = 2Bh) [reset = 0000h]
    27. 7.27 SRAM-DATA Register (address = 2Ch) [reset = 0000h]
    28. 7.28 BRDCAST-DATA Register (address = 50h) [reset = 0000h]
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 ドキュメントの更新通知を受け取る方法
    3. 9.3 サポート・リソース
    4. 9.4 Trademarks
    5. 9.5 静電気放電に関する注意事項
    6. 9.6 用語集
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

F/S Mode Protocol

The following steps explain a complete transaction in F/S mode.

  1. The controller initiates data transfer by generating a start condition. Figure 6-19 shows that the start condition is when a high-to-low transition occurs on the SDA line while SCL is high. All I2C-compatible devices recognize a start condition.
  2. The controller then generates the SCL pulses, and transmits the 7-bit address and the read/write direction bit (R/W) on the SDA line. During all transmissions, the controller makes sure that data are valid. Figure 6-20 shows that a valid data condition requires the SDA line to be stable during the entire high period of the clock pulse. All devices recognize the address sent by the controller and compare the address to the respective internal fixed address. Only the target device with a matching address generates an acknowledge by pulling the SDA line low during the entire high period of the 9th SCL cycle (see also Figure 6-18). When the controller detects this acknowledge, the communication link with a target has been established.
  3. The controller generates further SCL cycles to transmit (R/W bit 0) or receive (R/W bit 1) data to the target. In either case, the receiver must acknowledge the data sent by the transmitter. The acknowledge signal can be generated by the controller or by the target, depending on which is the receiver. The 9-bit valid data sequences consists of eight data bits and one acknowledge-bit, and can continue as long as necessary.
  4. Figure 6-19 shows that to signal the end of the data transfer, the controller generates a stop condition by pulling the SDA line from low-to-high while the SCL line is high. This action releases the bus and stops the communication link with the addressed target. All I2C-compatible devices recognize the stop condition. Upon receipt of a stop condition, the bus is released, and all target devices then wait for a start condition followed by a matching address.
GUID-20C784CC-377F-4ADA-A63D-C10556F4BD76-low.gifFigure 6-19 Start and Stop Conditions
GUID-671B5E2E-912C-4842-B2F7-5F23440F6143-low.gifFigure 6-20 Bit Transfer on the I2C Bus