JAJSGU2B January   2019  – May 2022 DLP4500

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. Chipset Component Usage Specification
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  Storage Conditions
    3. 7.3  ESD Ratings
    4. 7.4  Recommended Operating Conditions
    5. 7.5  Thermal Information
    6. 7.6  Electrical Characteristics
    7. 7.7  Timing Requirements
    8. 7.8  System Mounting Interface Loads
    9. 7.9  Micromirror Array Physical Characteristics
    10. 7.10 Micromirror Array Optical Characteristics
    11. 7.11 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
    4. 8.4 Device Functional Modes
      1. 8.4.1 Operating Modes
    5. 8.5 Micromirror Array Temperature Calculation
      1. 8.5.1 Package Thermal Resistance
      2. 8.5.2 Case Temperature
        1. 8.5.2.1 Temperature Calculation
    6. 8.6 Micromirror Landed-on/Landed-Off Duty Cycle
      1. 8.6.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle
      2. 8.6.2 Landed Duty Cycle and Useful Life of the DMD
      3. 8.6.3 Landed Duty Cycle and Operational DMD Temperature
      4. 8.6.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 DLPC350 System Interfaces
          1. 9.2.2.1.1 Control Interface
          2. 9.2.2.1.2 Input Data Interface
        2. 9.2.2.2 DLPC350 System Output Interfaces
          1. 9.2.2.2.1 Illumination Interface
          2. 9.2.2.2.2 Trigger Interface (Sync Outputs)
        3. 9.2.2.3 DLPC350 System Support Interfaces
          1. 9.2.2.3.1 Reference Clock
          2. 9.2.2.3.2 PLL
          3. 9.2.2.3.3 Program Memory Flash Interface
        4. 9.2.2.4 DMD Interfaces
          1. 9.2.2.4.1 DLPC350 to DMD Digital Data
          2. 9.2.2.4.2 DLPC350 to DMD Control Interface
          3. 9.2.2.4.3 DLPC350 to DMD Micromirror Reset Control Interface
  10. 10Power Supply Recommendations
    1. 10.1 Power Supply Sequencing Requirements
    2. 10.2 DMD Power Supply Power-Up Procedure
    3. 10.3 DMD Power Supply Power-Down Procedure
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 DMD Interface Design Considerations
      2. 11.1.2 DMD Termination Requirements
      3. 11.1.3 Decoupling Capacitors
      4. 11.1.4 Power Plane Recommendations
      5. 11.1.5 Signal Layer Recommendations
      6. 11.1.6 General Handling Guidelines for CMOS-Type Pins
      7. 11.1.7 PCB Manufacturing
        1. 11.1.7.1 General Guidelines
        2. 11.1.7.2 Trace Widths and Minimum Spacings
        3. 11.1.7.3 Routing Constraints
        4. 11.1.7.4 Fiducials
        5. 11.1.7.5 Flex Considerations
        6. 11.1.7.6 DLPC350 Thermal Considerations
    2. 11.2 Layout Example
      1. 11.2.1 Printed Circuit Board Layer Stackup Geometry
      2. 11.2.2 Recommended DLPC350 MOSC Crystal Oscillator Configuration
      3. 11.2.3 Recommended DLPC350 PLL Layout Configuration
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
      2. 12.1.2 Device Nomenclature
    2. 12.2 Device Markings
    3. 12.3 Documentation Support
      1. 12.3.1 Related Documentation
    4. 12.4 Receiving Notification of Documentation Updates
    5. 12.5 サポート・リソース
    6.     Trademarks
    7. 12.6 Electrostatic Discharge Caution
    8. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Temperature Calculation

Micromirror array temperature cannot be measured directly, therefore it must be computed analytically using one or more of these conditions:

  • Thermal test point location (see Figure 8-3 or Figure 8-4)
  • Package thermal resistance
  • Electrical power dissipation
  • Illumination heat load

The relationship between the micromirror array and the case temperature is provided by the following equations:

Equation 1. TArray = TCeramic + (QArray × RArray-To-Ceramic)
Equation 2. QArray = QElec + QIllum
Equation 3. QIllum = CL2W × SLPD × A × DMD Absorption Constant

where

  • TArray = Computed micromirror array temperature (°C)
  • TCeramic = Ceramic case temperature (°C), located at TP1
  • QArray = Total (electrical + absorbed) DMD array power (W)
  • RArray-to-Ceramic = Thermal resistance of DMD package from array to TP1 (°C/W)
  • QElec = Nominal electrical power (W)
  • QIllum = Absorbed illumination heat (W)
  • CL2W = Lumens-to-watts constant, estimated at 0.00293 W/lm, based on array characteristics. It assumes a spectral efficiency of 300 lm/W for the projected light, illumination distribution of 83.7% on the active array, and 16.3% on the array border and window aperturePD = Illumination power density
  • SL = Screen lumensA = Illumination area on DMD

An example calculation is provided in Equation 4 and Equation 5. DMD electrical power dissipation varies and depends on the voltage, data rates, and operating frequencies. The nominal electrical power dissipation is used in this calculation with nominal screen lumens of 200 lm and a ceramic case temperature at TP1 of 55°C with a power density of 2 W/cm2, an illumination area of 0.725 cm2, and a ceramic case temperature at TP1 of 55°C. The DMD absorption constant of 0.42 assumes nominal operation with an illumination distribution of 83.7% on the active array, 11.9% on the array border, and 4.4% on the window aperture. A system aperture may be required to limit power incident on the package aperture since this area absorbs much more efficiently than the array. Using these values in the previous equations, the following values are computed:

Equation 4. QArray = QElec+ CL2W × SL = 0.442 W + (0.00293 W/lm × 200 lm) = 1.028 W + QIllum = 0.442 W + (2 W/cm2 × 0.725 cm2 × 0.42) = 1.05 W
Equation 5. TArray = TCeramic + (QArray × RArray-To-Ceramic) = 55°C + (1.028 W1.05 W × 2°C/W) = 57.1°C