JAJSGK2 November   2018 DLP650LNIR

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     Device Images
      1.      アプリケーション概略図
  4. 改訂履歴
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  Storage Conditions
    3. 6.3  ESD Ratings
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Thermal Information
    6. 6.6  Electrical Characteristics
    7. 6.7  Timing Requirements
    8. 6.8  System Mounting Interface Loads
    9. 6.9  Micromirror Array Physical Characteristics
    10. 6.10 Micromirror Array Optical Characteristics
    11. 6.11 Window Characteristics
    12. 6.12 Chipset Component Usage Specification
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 System Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 DLPC410: Digital Controller for DLP Discovery 4100 Chipset
      2. 7.3.2 DLPA200: DMD Micromirror Driver
      3. 7.3.3 DLPR410: PROM for DLP Discovery 4100 Chipset
      4. 7.3.4 DLP650LNIR: DLP 0.65 WXGA NIR 2xLVDS Series 450 DMD
        1. 7.3.4.1 DLP650LNIR Chipset Interfaces
          1. 7.3.4.1.1 DLPC410 Interface Description
            1. 7.3.4.1.1.1 DLPC410 IO
            2. 7.3.4.1.1.2 Initialization
            3. 7.3.4.1.1.3 DMD Device Detection
            4. 7.3.4.1.1.4 Power Down
          2. 7.3.4.1.2 DLPC410 to DMD Interface
            1. 7.3.4.1.2.1 DLPC410 to DMD IO Description
            2. 7.3.4.1.2.2 Data Flow
          3. 7.3.4.1.3 DLPC410 to DLPA200 Interface
            1. 7.3.4.1.3.1 DLPA200 Operation
            2. 7.3.4.1.3.2 DLPC410 to DLPA200 IO Description
          4. 7.3.4.1.4 DLPA200 to DLP650LNIR Interface
            1. 7.3.4.1.4.1 DLPA200 to DLP650LNIR Interface Overview
      5. 7.3.5 Measurement Conditions
    4. 7.4 Device Operational Modes
      1. 7.4.1 DMD Block Modes
        1. 7.4.1.1 Single Block Mode
        2. 7.4.1.2 Dual Block Mode
        3. 7.4.1.3 Quad Block Mode
        4. 7.4.1.4 Global Mode
      2. 7.4.2 DMD Load4 Mode
    5. 7.5 Feature Description
      1. 7.5.1 Power Interface
      2. 7.5.2 Timing
    6. 7.6 Optical Interface and System Image Quality Considerations
      1. 7.6.1 Optical Interface and System Image Quality
      2. 7.6.2 Numerical Aperture and Stray Light Control
      3. 7.6.3 Pupil Match
      4. 7.6.4 Illumination Overfill
    7. 7.7 Micromirror Temperature Calculations
      1. 7.7.1 Sample Calculation 1: Uniform Illumination of Entire DMD Active Array (1280 × 800 pixels)
      2. 7.7.2 Sample Calculation 2: Partial DMD Active Array Illumination with Non-uniform Illumination Peak
    8. 7.8 Micromirror Landed-On/Landed-Off Duty Cycle
      1. 7.8.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle
      2. 7.8.2 Landed Duty Cycle and Useful Life of the DMD
      3. 7.8.3 Landed Duty Cycle and Operational DMD Temperature
      4. 7.8.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Device Description
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Impedance Requirements
      2. 10.1.2 PCB Signal Routing
      3. 10.1.3 Fiducials
      4. 10.1.4 DMD Interface
        1. 10.1.4.1 Trace Length Matching
      5. 10.1.5 DLP650LNIR Decoupling
        1. 10.1.5.1 Decoupling Capacitors
      6. 10.1.6 VCC and VCC2
      7. 10.1.7 DMD Layout
      8. 10.1.8 DLPA200
    2. 10.2 Layout Example
  11. 11デバイスおよびドキュメントのサポート
    1. 11.1 デバイス・サポート
      1. 11.1.1 デバイスの項目表記
      2. 11.1.2 デバイスのマーキング
    2. 11.2 ドキュメントのサポート
      1. 11.2.1 関連資料
    3. 11.3 関連リンク
    4. 11.4 ドキュメントの更新通知を受け取る方法
    5. 11.5 コミュニティ・リソース
    6. 11.6 商標
    7. 11.7 静電気放電に関する注意事項
    8. 11.8 Glossary
  12. 12メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Micromirror Temperature Calculations

DLP650LNIR DS-65WXGA-s450-Thermal.gifFigure 20. DMD Thermal Test Points

The DMD Micromirror temperature cannot be measured directly, therefore it must be computed analytically from:

  • the measurement point on the outside of the package
  • the silicon-to-ceramic thermal resistance
  • the mirror-to-silicon thermal resistance
  • the internally generated electrical power
  • and the illumination heat load


The relationship between mirror temperature and the reference ceramic temperature (thermal test TP1 in Figure 20) is provided by the following equations:

TMIRROR = TCERAMIC + Delta_TSILICON-TO-CERAMIC + Delta_TMIRROR-TO-SILICON
Delta_TSILICON-TO-CERAMIC = QSILICON × RSILICON-TO-CERAMIC
Delta_TMIRROR-TO-SILICON = QMIRROR × RMIRROR-TO-SILICON
QSILICON = QELECTRICAL + (αDMD × QINCIDENT)
Equation 1. QMIRROR = QINCIDENT_MIRROR × [FFOFF-STATE_MIRROR × (1 - MR)]
Equation 2. αDMD = [FFOFF-STATE_MIRROR × (1-MR)] + [1-FFOFF-STATE-MIRROR] + [2 × αWINDOW]


where:

  • TMIRROR = computed micromirror temperature (°C)
  • TCERAMIC = measured ceramic temperature (°C) (TP1 location)
  • Delta_TSILICON-TO-CERAMIC = temperature rise of silicon above ceramic test point TP1
  • Delta_TMIRROR-TO-SILICON = temperature rise of an individual mirror above the silicon (°C)
  • RSILICON-TO-CERAMIC = thermal resistance, silicon die to ceramic TP1 (°C/Watt) as specified in Thermal Information
  • RMIRROR-TO-SILICON = thermal resistance, individual mirror to silicon die (°C/Watt) as specified in Thermal Information
  • QSILICON = total DMD power (electrical + absorbed) on the silicon (Watts)
  • QMIRROR = absorbed heat load on a single mirror (Watts)
  • QELECTRICAL = nominal electrical power (Watts)
  • QINCIDENT = total incident optical power to DMD (Watts)
  • QINCIDENT_MIRROR = Incident optical power on an individual mirror (Watts)
  • αDMD = absorptivity of DMD
  • αWINDOW = absorptivity of DMD window (single pass)
  • FFOFF-STATE-MIRROR = DMD off-state mirror fill factor
  • MR = DMD mirror reflectivity

The electrical power dissipation of the DMD is variable and depends on the voltages, data rates and operating frequencies. The absorbed power from the illumination source is variable and depends on the operating state of the micromirrors and the intensity of the light source. The equations shown above are valid for a system operating at 1064 nm with 100% of the illumination contained within the 1280 × 800 active array mirrors. Silicon-to-ceramic thermal resistance assumes the entire active micromirror array is uniformly illuminated.

NOTE

Incident irradiation that concentrates on a subset of the micromirror array, results in an increase in effective package thermal resistance.