JAJSLA9E may   2015  – april 2023 DLP7000UV

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. 概要 (続き)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  Storage Conditions
    3. 7.3  ESD Ratings
    4. 7.4  Recommended Operating Conditions
    5. 7.5  Thermal Information
    6. 7.6  Electrical Characteristics
    7. 7.7  LVDS Timing Requirements
    8. 7.8  LVDS Waveform Requirements
    9. 7.9  Serial Control Bus Timing Requirements
    10. 7.10 Systems Mounting Interface Loads
    11. 7.11 Micromirror Array Physical Characteristics
    12. 7.12 Micromirror Array Optical Characteristics
    13. 7.13 Window Characteristics
    14. 7.14 Chipset Component Usage Specification
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 DLPC410 - Digital Controller for DLP Discovery 4100 Chipset
      2. 8.3.2 DLPA200 DMD Micromirror Driver
      3. 8.3.3 DLPR410 - PROM for DLP Discovery 4100 Chipset
      4. 8.3.4 DLP7000 - DLP 0.7 XGA 2xLVDS UV Type-A DMD
        1. 8.3.4.1 DLP7000UV Chipset Interfaces
          1. 8.3.4.1.1 DLPC410 Interface Description
            1. 8.3.4.1.1.1 DLPC410 IO
            2. 8.3.4.1.1.2 Initialization
            3. 8.3.4.1.1.3 DMD Device Detection
            4. 8.3.4.1.1.4 Power Down
        2. 8.3.4.2 DLPC410 to DMD Interface
          1. 8.3.4.2.1 DLPC410 to DMD IO Description
          2. 8.3.4.2.2 Data Flow
        3. 8.3.4.3 DLPC410 to DLPA200 Interface
          1. 8.3.4.3.1 DLPA200 Operation
          2. 8.3.4.3.2 DLPC410 to DLPA200 IO Description
        4. 8.3.4.4 DLPA200 to DLP7000UV Interface Overview
      5. 8.3.5 Measurement Conditions
    4. 8.4 Device Functional Modes
      1. 8.4.1 DMD Operation
        1. 8.4.1.1 Single Block Mode
        2. 8.4.1.2 Dual Block Mode
        3. 8.4.1.3 Quad Block Mode
        4. 8.4.1.4 Global Mode
    5. 8.5 Window Characteristics and Optics
      1. 8.5.1 Optical Interface and System Image Quality
      2. 8.5.2 Numerical Aperture and Stray Light Control
      3. 8.5.3 Pupil Match
      4. 8.5.4 Illumination Overfill
    6. 8.6 Micromirror Array Temperature Calculation
      1. 8.6.1 Package Thermal Resistance
      2. 8.6.2 Case Temperature
      3. 8.6.3 Micromirror Array Temperature Calculation
    7. 8.7 Micromirror Landed-On/Landed-Off Duty Cycle
      1. 8.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle
      2. 8.7.2 Landed Duty Cycle and Useful Life of the DMD
      3. 8.7.3 Landed Duty Cycle and Operational DMD Temperature
      4. 8.7.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 DMD Reflectivity Characteristics
      2. 9.1.2 Design Considerations Influencing DMD Reflectivity
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
    1. 10.1 Power-Up Sequence (Handled by the DLPC410)
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Impedance Requirements
      2. 11.1.2 PCB Signal Routing
      3. 11.1.3 Fiducials
      4. 11.1.4 PCB Layout Guidelines
        1. 11.1.4.1 DMD Interface
          1. 11.1.4.1.1 Trace Length Matching
        2. 11.1.4.2 DLP7000UV Decoupling
          1. 11.1.4.2.1 Decoupling Capacitors
        3. 11.1.4.3 VCC and VCC2
        4. 11.1.4.4 DMD Layout
        5. 11.1.4.5 DLPA200
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Device Nomenclature
        1. 12.1.1.1 Device Marking
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Related Links
    4. 12.4 サポート・リソース
    5. 12.5 Trademarks
    6. 12.6 静電気放電に関する注意事項
    7. 12.7 用語集
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

VCC and VCC2

The VCC pins of the DMD should be connected directly to the DMD VCC plane. Decoupling for the VCC should be distributed around the DMD and placed to minimize the distance from the voltage and ground pads. Each decoupling capacitor should have vias directly connected to the ground and power planes. The VCC and GND pads of the DMD should be tied to the VCC and ground planes with their own vias.

The VCC2 voltage can be routed to the DMD as a trace. Decoupling capacitors should be placed to minimize the distance from the VCC2 and ground pads of the DMD. Using wide etch from the decoupling capacitors to the DMD connection will reduce inductance and improve decoupling performance.