JAJSFX3F august   2012  – april 2023 DLP9500

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  Storage Conditions
    3. 6.3  ESD Ratings
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Thermal Information
    6. 6.6  Electrical Characteristics
    7. 6.7  LVDS Timing Requirements
    8. 6.8  LVDS Waveform Requirements
    9. 6.9  Serial Control Bus Timing Requirements
    10. 6.10 Systems Mounting Interface Loads
    11. 6.11 Micromirror Array Physical Characteristics
    12. 6.12 Micromirror Array Optical Characteristics
    13. 6.13 Window Characteristics
    14. 6.14 Chipset Component Usage Specification
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 DLPC410 - Digital Controller for DLP Discovery 4100 Chipset
      2. 7.3.2 DLPA200 - DMD Micromirror Drivers
      3. 7.3.3 DLPR410 - PROM for DLP Discovery 4100 Chipset
      4. 7.3.4 DLP9500 - DLP 0.95 1080p 2xLVDS Type-A DMD 1080p DMD
        1. 7.3.4.1 DLP9500 1080p Chipset Interfaces
          1. 7.3.4.1.1 DLPC410 Interface Description
            1. 7.3.4.1.1.1 DLPC410 IO
            2. 7.3.4.1.1.2 Initialization
            3. 7.3.4.1.1.3 DMD Device Detection
            4. 7.3.4.1.1.4 Power Down
          2. 7.3.4.1.2 DLPC410 to DMD Interface
            1. 7.3.4.1.2.1 DLPC410 to DMD IO Description
            2. 7.3.4.1.2.2 Data Flow
          3. 7.3.4.1.3 DLPC410 to DLPA200 Interface
            1. 7.3.4.1.3.1 DLPA200 Operation
            2. 7.3.4.1.3.2 DLPC410 to DLPA200 IO Description
          4. 7.3.4.1.4 DLPA200 to DLP9500 Interface
            1. 7.3.4.1.4.1 DLPA200 to DLP9500 Interface Overview
      5. 7.3.5 Measurement Conditions
    4. 7.4 Device Functional Modes
      1. 7.4.1 Single Block Mode
      2. 7.4.2 Dual Block Mode
      3. 7.4.3 Quad Block Mode
      4. 7.4.4 Global Block Mode
    5. 7.5 Window Characteristics and Optics
      1. 7.5.1 Optical Interface and System Image Quality
      2. 7.5.2 Numerical Aperture and Stray Light Control
      3. 7.5.3 Pupil Match
      4. 7.5.4 Illumination Overfill
    6. 7.6 Micromirror Array Temperature Calculation
      1. 7.6.1 Thermal Test Points
      2. 7.6.2 Micromirror Array Temperature Calculation - Lumens Based
      3. 7.6.3 Micromirror Array Temperature Calculation - Power Density Based
      4. 7.6.4 59
    7. 7.7 Micromirror Landed-On and Landed-Off Duty Cycle
      1. 7.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle
      2. 7.7.2 Landed Duty Cycle and Useful Life of the DMD
      3. 7.7.3 Landed Duty Cycle and Operational DMD Temperature
      4. 7.7.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
        1. 8.2.1.1 Device Description
      2. 8.2.2 Detailed Design Procedure
  9. Power Supply Recommendations
    1. 9.1 Power-Up Sequence (Handled by the DLPC410)
    2. 9.2 DMD Power-Up and Power-Down Procedures
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Impedance Requirements
      2. 10.1.2 PCB Signal Routing
      3. 10.1.3 Fiducials
      4. 10.1.4 PCB Layout Guidelines
        1. 10.1.4.1 DMD Interface
          1. 10.1.4.1.1 Trace Length Matching
        2. 10.1.4.2 DLP9500 Decoupling
          1. 10.1.4.2.1 Decoupling Capacitors
        3. 10.1.4.3 VCC and VCC2
        4. 10.1.4.4 DMD Layout
        5. 10.1.4.5 DLPA200
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Device Nomenclature
      2. 11.1.2 Device Marking
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Related Links
    4. 11.4 サポート・リソース
    5. 11.5 Trademarks
    6. 11.6 静電気放電に関する注意事項
    7. 11.7 用語集
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Micromirror Array Temperature Calculation - Lumens Based

where

  • TCeramic = Measured ceramic temperature (°C) at location (test point number 1)
  • RArray-To-Ceramic = DMD package thermal resistance from array to outside ceramic (°C/W)
  • QArray = Total DMD array power, which is both electrical plus absorbed on the DMD active array (W)

where

  • QElectrical = Approximate nominal electrical internal power dissipation (W)
  • QIllumination = [Illumination power density × illumination area on DMD] (W)
  • DMD absorption constant = 0.42
  • Illumination power density = 2 W/cm2
  • Illumination area = (2.0736 cm × 1.1664 cm) / 83.7% = 2.89 cm2 (assumes 83.7% on the active array and 16.3% overfill)
  • QIllumination= 2 W/cm2 × 2.89 cm2 = 5.78 W
  • QElectrical = 4.4 W
  • RArray-To-Ceramic = 0.5°C/W
  • TCeramic = 20°C (measured on ceramic)
  • QArray = 4.4 W + (5.78 W × 0.42) = 6.83 W
  • TArray = 20°C + (6.83 W × 0.5°C/W) = 23.4°C

Micromirror array temperature cannot be measured directly; therefore, it must be computed analytically from:

  • the measurement points (Figure 7-10)
  • the package thermal resistance
  • the electrical power
  • the illumination heat load

The relationship between micromirror array temperature and the reference ceramic temperature (thermal test point TP1 in Figure 7-10) is provided by the following equations:

TARRAY = T CERAMIC + (QARRAY × RARRAY-TO-CERAMIC)
QARRAY = QELECTRICAL + QILLUMINATION

where

  • TARRAY = computed array temperature (°C)
  • TCERAMIC = measured ceramic temperature (°C) (TP1 location)
  • RARRAY-TO-CERAMIC = thermal resistance of DMD package (specified in Section 6.5) from array to ceramic TP1 (°C/W)
  • QARRAY = total power (electrical + absorbed) on the array (Watts)
  • QELECTRICAL = nominal electrical power (Watts)
  • QILLUMINATION = (CL2W × SL) (Watts)
  • CL2W = conversion constant for screen lumens to power on DMD (Watts/lumen)
  • SL = measured screen lumens

The electrical power dissipation of the DMD is variable and depends on the voltages, data rates, and operating frequencies. A nominal electrical power dissipation to use when calculating array temperature is 4.4 Watts. The absorbed power from the illumination source is variable and depends on the operating state of the micromirrors and the intensity of the light source. The conversion constant CL2W is based on the DMD input illumination characteristics. It assumes a spectral efficiency of 300 lumens/Watt for the projected light and an illumination distribution of 83.7% on the active array and 16.3% on the array border. The equations shown above are valid for a system with a total projection efficiency through the projection lens from the DMD to the screen of 87%.

Sample calculation for typical application:

  • TCeramic = 55°C (measured)
  • SL = 2000 lm (measured)
  • QELECTRICAL = 4.4 Watts
  • RARRAY-TO-CERAMIC = 0.5 °C/W
  • CL2W = 0.00274 W/lm
  • QARRAY = 4.4 + (0.00274 W/lm × 2000 lm) = 9.88 W
  • TARRAY = 55°C + (9.88 W x 0.5 °C) = 59.9 °C