JAJSSJ5 December   2023 DRV8234

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 I2C Timing Requirements
    7. 6.7 Timing Diagrams
    8. 6.8 Typical Operating Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 External Components
      2. 7.3.2 Summary of Features
      3. 7.3.3 Bridge Control
      4. 7.3.4 Current Sense and Regulation (IPROPI)
        1. 7.3.4.1 Current Sensing
        2. 7.3.4.2 Current Regulation
          1. 7.3.4.2.1 Fixed Off-Time Current Regulation
          2. 7.3.4.2.2 Cycle-By-Cycle Current Regulation
      5. 7.3.5 Stall Detection
      6. 7.3.6 Ripple Counting
        1. 7.3.6.1 Ripple Counting Parameters
          1. 7.3.6.1.1  Motor Resistance Inverse
          2. 7.3.6.1.2  Motor Resistance Inverse Scale
          3. 7.3.6.1.3  KMC Scaling Factor
          4. 7.3.6.1.4  KMC
          5. 7.3.6.1.5  Filter Damping Constant
          6. 7.3.6.1.6  Filter Input Scaling Factor
          7. 7.3.6.1.7  Ripple Count Threshold
          8. 7.3.6.1.8  Ripple Count Threshold Scale
          9. 7.3.6.1.9  T_MECH_FLT
          10. 7.3.6.1.10 VSNS_SEL
          11. 7.3.6.1.11 Error Correction
            1. 7.3.6.1.11.1 EC_FALSE_PER
            2. 7.3.6.1.11.2 EC_MISS_PER
        2. 7.3.6.2 RC_OUT Output
        3. 7.3.6.3 Ripple Counting with nFAULT
      7. 7.3.7 Motor Voltage and Speed Regulation
        1. 7.3.7.1 Internal Bridge Control
        2. 7.3.7.2 Setting Speed/Voltage Regulation Parameters
          1. 7.3.7.2.1 Speed and Voltage Set
          2. 7.3.7.2.2 Speed Scaling Factor
        3. 7.3.7.3 Soft-Start and Soft-Stop
          1. 7.3.7.3.1 TINRUSH
      8. 7.3.8 Protection Circuits
        1. 7.3.8.1 Overcurrent Protection (OCP)
        2. 7.3.8.2 Thermal Shutdown (TSD)
        3. 7.3.8.3 VM Undervoltage Lockout (VM UVLO)
        4. 7.3.8.4 Overvoltage Protection (OVP)
        5. 7.3.8.5 nFAULT Output
    4. 7.4 Device Functional Modes
      1. 7.4.1 Active Mode
      2. 7.4.2 Low-Power Sleep Mode
      3. 7.4.3 Fault Mode
    5. 7.5 Programming
      1. 7.5.1 I2C Communication
        1. 7.5.1.1 I2C Write
        2. 7.5.1.2 I2C Read
    6. 7.6 Register Map
      1. 7.6.1 DRV8234_STATUS Registers
      2. 7.6.2 DRV8234_CONFIG Registers
      3. 7.6.3 DRV8234_CTRL Registers
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application: Brushed DC Motor
      1. 8.2.1 Design Requirements
      2. 8.2.2 Stall Detection
        1. 8.2.2.1 Application Description
          1. 8.2.2.1.1 Stall Detection Timing
          2. 8.2.2.1.2 Hardware Stall Threshold Selection
      3. 8.2.3 Ripple Counting Application
        1. 8.2.3.1 Tuning Ripple Counting Parameters
          1. 8.2.3.1.1 Resistance Parameters
          2. 8.2.3.1.2 KMC and KMC_SCALE
            1. 8.2.3.1.2.1 Case I
            2. 8.2.3.1.2.2 Case II
              1. 8.2.3.1.2.2.1 Method 1: Tuning from Scratch
                1. 8.2.3.1.2.2.1.1 Tuning KMC_SCALE
                2. 8.2.3.1.2.2.1.2 Tuning KMC
              2. 8.2.3.1.2.2.2 Method 2: Using the Proportionality factor
                1. 8.2.3.1.2.2.2.1 Working Example
          3. 8.2.3.1.3 Advanced Parameters
            1. 8.2.3.1.3.1 Filter Constants
              1. 8.2.3.1.3.1.1 FLT_GAIN_SEL
              2. 8.2.3.1.3.1.2 FLT_K
            2. 8.2.3.1.3.2 T_MECH_FLT
            3. 8.2.3.1.3.3 VSNS_SEL
            4. 8.2.3.1.3.4 Additional Error Corrector Parameters
              1. 8.2.3.1.3.4.1 EC_FALSE_PER
              2. 8.2.3.1.3.4.2 EC_MISS_PER
      4. 8.2.4 Motor Voltage
      5. 8.2.5 Motor Current
      6. 8.2.6 Application Curves
  10. Power Supply Recommendations
    1. 9.1 Bulk Capacitance
  11. 10Layout
    1. 10.1 Layout Guidelines
  12. 11Device and Documentation Support
    1. 11.1 ドキュメントの更新通知を受け取る方法
    2. 11.2 サポート・リソース
    3. 11.3 Trademarks
    4. 11.4 静電気放電に関する注意事項
    5. 11.5 用語集
  13. 12Revision History

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報
Cycle-By-Cycle Current Regulation

In cycle-by-cycle mode, the H-bridge enters a brake, low-side slow decay state (both low-side MOSFETs ON) after IOUT exceeds ITRIP until the next control input edge on either the EN/IN1 or PH/IN2 pins or 0 to 1 transitions on the I2C_EN_IN1 or I2C_PH_IN2 bits. This allows for additional control of the current regulation by the external controller. This is shown in the diagram below. Cycle-by-cycle mode will not support 100% duty cycle current regulation as a new control input edge is required to reset the outputs after the brake, low-side slow decay state has been entered.

GUID-FF4FDE75-2275-4130-B372-3E3D4BE5DE7C-low.gifFigure 7-6 Cycle-By-Cycle Current Regulation

In cycle-by-cycle mode, the device can indicate whenever the H-bridge enters internal current regulation by pulling the nFAULT pin low. This can be used to determine when the device outputs will differ from the control inputs or the load has reached the ITRIP threshold. This behavior is controlled by the CBC_REP bit. This is shown in the following diagram. In cycle-by-cycle mode, if the CBC_REP bit is 1b, nFAULT will be pulled low when the H-bridge enters internal current regulation and nFAULT will be released whenever the next control input edge is received by the device and the outputs are reset.

GUID-8EF3E816-474D-4A9C-BE89-0FC38C23E79E-low.gifFigure 7-7 Cycle-By-Cycle Current Regulation, CBC_REP = 1b

No device functionality is affected when the nFAULT pin is pulled low for the current regulation indicator. The nFAULT pin is only used as an indicator and the device will continue normal operation. To distinguish a device fault from the current regulation indicator, the nFAULT pin can be compared with the control inputs. The current regulation indicator can only assert when the control inputs are commanding a forward or reverse drive state. If the nFAULT pin is pulled low and the control inputs are commanding the high-Z or slow-decay states, then a device fault has occurred.