JAJSKI6C May   2020  – July 2022 DRV8424 , DRV8425

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. 改訂履歴
    1.     デバイス比較表
  5. ピン構成および機能
  6. 仕様
    1. 6.1 絶対最大定格
    2. 6.2 ESD定格
    3. 6.3 推奨動作条件
    4. 6.4 熱に関する情報
    5. 6.5 電気的特性
    6. 6.6 インデクサ・タイミング要件
    7. 6.7 代表的特性
  7. 詳細説明
    1. 7.1 概要
    2. 7.2 機能ブロック図
    3. 7.3 機能説明
      1. 7.3.1  ステッピング・モータ・ドライバの電流定格
        1. 7.3.1.1 ピーク電流定格
        2. 7.3.1.2 RMS 電流定格
        3. 7.3.1.3 フルスケール電流定格
      2. 7.3.2  PWM モータ・ドライバ
      3. 7.3.3  マイクロステッピング・インデクサ
      4. 7.3.4  MCU DAC による VREF の制御
      5. 7.3.5  電流レギュレーション
      6. 7.3.6  減衰モード
        1. 7.3.6.1 電流増加および減少でスロー・ディケイ
        2. 7.3.6.2 電流増加ではスロー・ディケイ、電流減少ではミックス・ディケイ
        3. 7.3.6.3 電流増加および減少でミックス・ディケイ
        4. 7.3.6.4 スマート・チューン・ダイナミック・ディケイ
        5. 7.3.6.5 スマート・チューン・リップル・コントロール
        6. 7.3.6.6 PWM オフ時間
        7. 7.3.6.7 ブランキング時間
      7. 7.3.7  チャージ・ポンプ
      8. 7.3.8  リニア電圧レギュレータ
      9. 7.3.9  論理レベル、トライレベル、クワッドレベルのピン構造図
      10. 7.3.10 nFAULT ピン
      11. 7.3.11 保護回路
        1. 7.3.11.1 VM 低電圧誤動作防止 (UVLO)
        2. 7.3.11.2 VCP 低電圧誤動作防止 (CPUV)
        3. 7.3.11.3 過電流保護 (OCP)
          1. 7.3.11.3.1 ラッチド・シャットダウン
          2. 7.3.11.3.2 自動リトライ
        4. 7.3.11.4 サーマル・シャットダウン (OTSD)
          1. 7.3.11.4.1 ラッチド・シャットダウン
          2. 7.3.11.4.2 自動リトライ
        5. 7.3.11.5 フォルト条件のまとめ
    4. 7.4 デバイスの機能モード
      1. 7.4.1 スリープ・モード (nSLEEP = 0)
      2. 7.4.2 ディセーブル・モード (nSLEEP = 1、ENABLE = 0)
      3. 7.4.3 動作モード (nSLEEP = 1、ENABLE = ハイ・インピーダンス / 1)
      4. 7.4.4 nSLEEP リセット・パルス
      5. 7.4.5 機能モードのまとめ
  8. アプリケーションと実装
    1. 8.1 アプリケーション情報
    2. 8.2 代表的なアプリケーション
      1. 8.2.1 設計要件
      2. 8.2.2 詳細な設計手順
        1. 8.2.2.1 ステッピング・モータの速度
        2. 8.2.2.2 電流レギュレーション
        3. 8.2.2.3 ディケイ・モード
      3. 8.2.3 アプリケーション曲線
      4. 8.2.4 熱に関連するアプリケーション
        1. 8.2.4.1 消費電力との関係
          1. 8.2.4.1.1 導通損失
          2. 8.2.4.1.2 スイッチング損失
          3. 8.2.4.1.3 静止電流による消費電力
          4. 8.2.4.1.4 全消費電力
        2. 8.2.4.2 デバイスの接合部温度の概算
  9. 電源に関する推奨事項
    1. 9.1 バルク・コンデンサ
  10. 10レイアウト
    1. 10.1 レイアウトのガイドライン
    2. 10.2 レイアウト例
  11. 11デバイスおよびドキュメントのサポート
    1. 11.1 関連リンク
    2. 11.2 ドキュメントの更新通知を受け取る方法
    3. 11.3 コミュニティ・リソース
    4. 11.4 商標
    5. 11.5 静電気放電に関する注意事項
  12. 12メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

スマート・チューン・ダイナミック・ディケイ

スマート・チューン電流レギュレーション方式は、従来の固定オフ時間電流レギュレーション方式に比べて高度な電流レギュレーション制御手法です。スマート・チューン電流レギュレーション方式を使うと、ステッピング・モータ・ドライバは以下のような動作要因に基づいてディケイ方式を調整できます。

  • モータの巻線抵抗およびインダクタンス
  • モータの経年変化
  • モータの動的速度および負荷
  • モータの電源電圧変動
  • 立ち上がりおよび立ち下がりステップでのモータの逆起電力の差
  • ステップ遷移
  • 小電流と大電流の dI/dt

本デバイスは 2 つのスマート・チューン電流レギュレーション・モード (スマート・チューン・ダイナミック・ディケイとスマート・チューン・リップル・コントロール) を備えています。

GUID-E1F216D3-784D-4456-B388-41ACA1F5EB69-low.gif図 7-12 スマート・チューン・ダイナミック・ディケイ・モード

スマート・チューン・ダイナミック・ディケイでは、スロー、ミックス、ファースト・ディケイといったディケイ・モードが自動的に構成されるため、ディケイ・モードの選択が大幅に簡略化されます。ミックス・ディケイでは、スマート・チューンにより、ミックス・ディケイの総時間に対するファースト・ディケイの割合が動的に調整されます。この機能により、モータのリップルを最小限に抑える最良のディケイ設定が自動的に決定されるため、モータのチューニングが不要になります。

ディケイ・モード設定は、各 PWM サイクルで繰り返し最適化されます。モータ電流が目標トリップ・レベルを超えると、レギュレーション損失を防ぐため、次のサイクルでディケイ・モードはより積極的になります (ファースト・ディケイの割合を増やします)。目標トリップ・レベルに達するまでに長い駆動時間を必要とする場合は、リップルを抑え、効率を上げるために、次のサイクルでディケイ・モードはより消極的になります (ファースト・ディケイの割合を減らします)。立ち下がりステップでは、次のステップに素早く達するために、スマート・チューン・ダイナミック・ディケイは自動的にファースト・ディケイに切り替わります。

スマート・チューン・ダイナミック・ディケイは、電流レギュレーション方式で電流リップルを最小限に抑える必要がありながら、固定周波数を維持する必要があるアプリケーションに最適です。