SLOSEC6 August   2024 DRV8434A-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
    1. 4.1 Pin Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 STEP and DIR Timing Requirements
      1. 5.6.1 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Stepper Motor Driver Current Ratings
        1. 6.3.1.1 Peak Current Rating
        2. 6.3.1.2 RMS Current Rating
        3. 6.3.1.3 Full-Scale Current Rating
      2. 6.3.2 PWM Motor Drivers
      3. 6.3.3 Microstepping Indexer
      4. 6.3.4 Controlling VREF with an MCU DAC
      5. 6.3.5 Current Regulation and Decay Mode
        1. 6.3.5.1 Smart tune Ripple Control
        2. 6.3.5.2 Blanking time
      6. 6.3.6 Charge Pump
      7. 6.3.7 Linear Voltage Regulators
      8. 6.3.8 Logic Level, Tri-Level and Quad-Level Pin Diagrams
        1. 6.3.8.1 nFAULT and STL_REP Pin
      9. 6.3.9 Protection Circuits
        1. 6.3.9.1 VM Undervoltage Lockout (UVLO)
        2. 6.3.9.2 VCP Undervoltage Lockout (CPUV)
        3. 6.3.9.3 Overcurrent Protection (OCP)
        4. 6.3.9.4 Stall Detection
        5. 6.3.9.5 Open-Load Detection (OL)
        6. 6.3.9.6 Thermal Shutdown (OTSD)
        7.       Fault Condition Summary
    4. 6.4 Device Functional Modes
      1. 6.4.1 Sleep Mode (nSLEEP = 0)
      2.      43
      3. 6.4.2 Disable Mode (nSLEEP = 1, ENABLE = 0)
      4. 6.4.3 Operating Mode (nSLEEP = 1, ENABLE = Hi-Z/1)
      5. 6.4.4 nSLEEP Reset Pulse
      6.      Functional Modes Summary
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Stepper Motor Speed
        2. 7.2.2.2 Current Regulation
        3. 7.2.2.3 Decay Mode
        4. 7.2.2.4 Application Curves
        5. 7.2.2.5 Thermal Application
          1. 7.2.2.5.1 Power Dissipation
          2. 7.2.2.5.2 Conduction Loss
          3. 7.2.2.5.3 Switching Loss
          4. 7.2.2.5.4 Power Dissipation Due to Quiescent Current
          5. 7.2.2.5.5 Total Power Dissipation
          6. 7.2.2.5.6 Device Junction Temperature Estimation
  9. Power Supply Recommendations
    1. 8.1 Bulk Capacitance
  10. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報
Conduction Loss

The current path for a motor connected in full-bridge is through the high-side FET of one half-bridge and low-side FET of the other half-bridge. The conduction loss (PCOND) depends on the motor rms current (IRMS) and high-side (RDS(ONH)) and low-side (RDS(ONL)) on-state resistances as shown in Equation 2.

Equation 2. PCOND = 2 x (IRMS)2 x (RDS(ONH) + RDS(ONL))

The conduction loss for the typical application shown in Typical Application is calculated in Equation 3.

Equation 3. PCOND = 2 x (IRMS)2 x (RDS(ONH) + RDS(ONL)) = 2 x (2-A / √2)2 x (0.165-Ω + 0.165-Ω) = 1.32-W
Note:

This power calculation is highly dependent on the device temperature which significantly effects the high-side and low-side on-resistance of the FETs. For more accurate calculation, consider the dependency of on-resistance of FETs with device temperature.