JAJSJA4L June 2011 – February 2021 F28M35E20B , F28M35H22C , F28M35H52C , F28M35H52C-Q1 , F28M35M22C , F28M35M52C
PRODUCTION DATA
The 32-bit Cortex-M3 processor offers high performance, fast interrupt handling, and access to a variety of communication peripherals (including Ethernet and USB). The Cortex-M3 features a Memory Protection Unit (MPU) to provide a privileged mode for protected operating system functionality. A bus bridge adjacent to the MPU can route program instructions and data on the I-CODE and D-CODE buses that connect to the Boot ROM and Flash. Other data is typically routed through the Cortex-M3 System Bus connected to the local RAMs. The System Bus also goes to the Shared Resources block (also accessible by the Control Subsystem) and to the Analog Subsystem through the ACIB. Another bus bridge allows bus cycles from both the Cortex-M3 System Bus and those of the µDMA bus to access the Master Subsystem peripherals (through the APB bus or the AHP bus).
Most of the interrupts to the Cortex-M3 CPU come from the NVIC, which manages the interrupt requests from peripherals and assigns handling priorities. There are also several exceptions generated by Cortex-M3 CPU that can return to the Cortex-M3 as interrupts after being prioritized with other requests inside the NVIC. In addition to programmable priority interrupts, there are also three levels of fixed-priority interrupts of which the highest priority, level-3, is given to M3PORRST and M3SYSRST resets from the Resets block. The next highest priority, level-2, is assigned to the M3NMIINT, which originates from the NMI block. The M3HRDFLT (Hard Fault) interrupt is assigned to level-1 priority, and this interrupt is caused by one of the error condition exceptions (Memory Management, Bus Fault, Usage Fault) escalating to Hard Fault because they are not enabled or not properly serviced.
The Cortex-M3 CPU has two low-power modes: Sleep and Deep Sleep.