JAJSJA4L June 2011 – February 2021 F28M35E20B , F28M35H22C , F28M35H52C , F28M35H52C-Q1 , F28M35M22C , F28M35M52C
PRODUCTION DATA
The Cortex-M3 NMI Block generates an M3NMIINT nonmaskable interrupt to the Cortex-M3 CPU and an M3NMI event to the NMI Watchdog in response to potentially critical conditions existing inside or outside the Concerto MCU. When able to respond to the M3NMIINT interrupt, the Cortex-M3 CPU may address the NMI condition and disable the NMI Watchdog. Otherwise, the NMI Watchdog counts out and an M3NMIRST reset signal is sent to the Resets block.
The inputs to the Cortex-M3 NMI block include the C28NMIRST, PIENMIERR, CLOCKFAIL, ACIBERR, EXTGPIO, MLBISTERR, and CLBISTERR signals. The C28NMIRST comes from the C28x NMI Watchdog; C28NMIRST indicates that the C28x was not able to prevent the C28x NMI Watchdog counter from counting out. PIENMIERR indicates that an error condition was generated during the NMI vector fetch from the C28x PIE block. The CLOCKFAIL input comes from the Master Clocks Block, announcing a missing clock source to the Main Oscillator. ACIBERR indicates an abnormal condition inside the Analog Common Interface Bus. EXTGPIO comes from the GPIO_MUX1 to announce an external emergency. MLBISTERR is generated by the Cortex-M3 core to signal that a BIST time-out or signature mismatch error has been detected. CLBISTERR is generated by the C28x core to signal that a BIST time-out or signature mismatch error has been detected.
The Cortex-M3 NMI block can be accessed through the Cortex-M3 NMI configuration registers—including the MNMIFLG, MNMIFLGCLR, and MNMIFLGFRC registers—to examine flag bits for the NMI sources, clear the flags, and force the flags to active state, respectively.
Figure 8-4 shows the Cortex-M3 NMI and C28x NMI.