JAJSR87C April   2015  – September 2023

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Integrated Shunt Resistor
      2. 7.3.2 Short-Circuit Duration
      3. 7.3.3 Temperature Stability
    4. 7.4 Device Functional Modes
      1. 7.4.1 Amplifier Operation
      2. 7.4.2 Input Filtering
        1. 7.4.2.1 Calculating Gain Error Resulting from External Filter Resistance
      3. 7.4.3 Shutting Down the Device
      4. 7.4.4 Using the Device with Common-Mode Transients Above 36 V
  9. Applications and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Current Summing
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curve
      2. 8.2.2 Parallel Multiple INA250 Devices for Higher Current
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curve
      3. 8.2.3 Current Differencing
        1. 8.2.3.1 Design Requirements
        2. 8.2.3.2 Detailed Design Procedure
        3. 8.2.3.3 Application Curve
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Examples
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 ドキュメントの更新通知を受け取る方法
    3. 9.3 サポート・リソース
    4. 9.4 Trademarks
    5. 9.5 静電気放電に関する注意事項
    6. 9.6 用語集
  11. 10Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Temperature Stability

System calibration is common for many industrial applications to eliminate initial component and system-level errors that can be present.  A system-level calibration can reduce the initial accuracy requirement for many of the individual components because the errors associated with these components are effectively eliminated through the calibration procedure.  Performing this calibration can enable precision measurements at the temperature in which the system is calibrated, but as the system temperature changes as a result of external ambient changes or due to self heating, measurement errors are reintroduced. Without accurate temperature compensation used in addition to the initial adjustment, the calibration procedure is not effective in accounting for these temperature-induced changes. One of the primary benefits of the very low temperature coefficient of the INA250 (including both the integrated current-sensing resistor and current-sensing amplifier) is ensuring that the device measurement remains highly accurate, even when the temperature changes throughout the specified temperature range of the device.

For the integrated current-sensing resistor, the drift performance is shown in Figure 7-3. Although several temperature ranges are specified in the Electrical Characteristics table, applications operating in ranges other than those described can use Figure 7-3 to determine how much variance in the shunt resistor value can be expected. As with any resistive element, the tolerance of the component varies when exposed to different temperature conditions.  For the current-sensing resistor integrated in the INA250, the resistor does vary slightly more when operated in temperatures ranging from –40°C to 0°C than when operated from 0°C to 125°C. However, even in the –40°C to 0°C temperature range, the drift is still quite low at 25 ppm/°C.

GUID-6C5CB34D-248B-4905-B064-FB503FA7EE32-low.pngFigure 7-3 Sensing Resistor vs Temperature

An additional aspect to consider is that when current flows through the current-sensing resistor, power is dissipated across this component. This dissipated power results in an increase in the internal temperature of the package, including the integrated sensing resistor. This resistor self-heating effect results in an increase of the resistor temperature helping to move the component out of the colder, wider drift temperature region.