SLLSEN3 December   2015 ISO7421-EP

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics: VCC1 and VCC2 at 5 V ±10%
    6. 6.6  Electrical Characteristics: VCC1 at 5 V ±10%, VCC2 at 3.3 V ±10%
    7. 6.7  Electrical Characteristics: VCC1 at 3.3 V ±10%, VCC2 at 5 V ±10%
    8. 6.8  Electrical Characteristics: VCC1 and VCC2 at 3.3 V ±10%
    9. 6.9  Power Dissipation
    10. 6.10 Switching Characteristics: VCC1 and VCC2 at 5 V ±10%
    11. 6.11 Switching Characteristics: VCC1 at 5 V ±10%, VCC2 at 3.3 V ±10%
    12. 6.12 Switching Characteristics: VCC1 at 3.3 V ±10%, VCC2 at 5 V ±10%
    13. 6.13 Switching Characteristics: VCC1 and VCC2 at 3.3 V ±10%
    14. 6.14 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Insulation Characteristics
      2. 8.3.2 Package Characteristics
      3. 8.3.3 Safety Limiting Values
      4. 8.3.4 Regulatory Information
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 PCB Material
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

6 Specifications

6.1 Absolute Maximum Ratings

see (1)
MIN MAX UNIT
VCC Supply voltage(2), VCC1, VCC2 –0.5 6 V
VI Voltage at IN, OUT –0.5 VCC + 0.5(3) V
IO Output current –15 15 mA
TJ(max) Maximum junction temperature 150 °C
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values except differential I/O bus voltages are with respect to network ground terminal and are peak voltage values.
(3) Maximum voltage must not exceed 6 V.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±4000 V
Field-induced charged-device model, JEDEC Standard 22, Test Method C101 ±1500
Machine model, ANSI/ESDS5.2-1996 ±200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

MIN NOM MAX UNIT
VCC1, VCC2 Supply voltage - 3.3-V operation 3 3.3 3.6 V
Supply voltage - 5-V operation 4.5 5 5.5
IOH High-level output current –4 mA
IOL Low-level output current 4 mA
VIH High-level input voltage 2 5.25 V
VIL Low-level input voltage 0 0.8 V
1/tui Signaling rate 0 1 Mbps
tui Input pulse duration 1 us
TJ(1) Junction temperature –55 136 °C
(1) To maintain the recommended operating conditions for TJ, see the Thermal Information.

6.4 Thermal Information

THERMAL METRIC(1) ISO7421-EP UNIT
D (SOIC)
8 PINS
RθJA Junction-to-ambient thermal resistance Low-K Board 212 °C/W
High-K Board 116.6
RθJC(top) Junction-to-case (top) thermal resistance 71.6 °C/W
RθJB Junction-to-board thermal resistance 57.3 °C/W
ψJT Junction-to-top characterization parameter 28.3 °C/W
ψJB Junction-to-board characterization parameter 56.8 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics: VCC1 and VCC2 at 5 V ±10%

TJ = –55°C to 136°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VOH High-level output voltage IOH = –4 mA; see Figure 6. VCCO(1) – 0.8 4.6 V
IOH = –20 μA; see Figure 6. VCCO – 0.1 5
VOL Low-level output voltage IOL = 4 mA; see Figure 6. 0.2 0.4 V
IOL = 20 μA; see Figure 6. 0 0.1
VI(HYS) Input threshold voltage hysteresis 400 mV
IIH High-level input current INx at 0 V or VCCI (1) 10 μA
IIL Low-level input current –10 μA
CMTI Common-mode transient immunity VI = VCCI or 0 V; see Figure 8. 25 50 kV/μs
SUPPLY CURRENT (ALL INPUTS SWITCHING WITH SQUARE WAVE CLOCK SIGNAL FOR DYNAMIC ICC MEASUREMENT)
ICC1 Supply current for VCC1 DC to 1 Mbps VI = VCCI or 0 V, 15 pF load 2 4 mA
ICC2 Supply current for VCC2 2 4
(1) VCCI = Input-side power supply, VCCO = Output-side power supply

6.6 Electrical Characteristics: VCC1 at 5 V ±10%, VCC2 at 3.3 V ±10%

TJ = –55°C to 136°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VOH High-level output voltage IOH = –4 mA; see Figure 6. 5-V side VCCO(1) – 0.8 4.6 V
3.3-V side VCCO – 0.4 3
IOH = –20 μA; see Figure 6, VCCO – 0.1 VCC
VOL Low-level output voltage IOL = 4 mA; see Figure 6. 0.2 0.4 V
IOL = 20 μA; see Figure 6. 0 0.1
VI(HYS) Input threshold voltage hysteresis 400 mV
IIH High-level input current INx at 0 V or VCCI (1) 10 μA
IIL Low-level input current –10 μA
CMTI Common-mode transient immunity VI = VCCI or 0 V; seeFigure 8 . 25 40 kV/μs
SUPPLY CURRENT (ALL INPUTS SWITCHING WITH SQUARE WAVE CLOCK SIGNAL FOR DYNAMIC ICC MEASUREMENT)
ICC1 Supply current for VCC1 DC to 1 Mbps VI = VCCI or 0 V, 15 pF load 2 4 mA
ICC2 Supply current for VCC2 1.5 3.5 mA
(1) VCCI = Input-side power supply, VCCO = Output-side power supply

6.7 Electrical Characteristics: VCC1 at 3.3 V ±10%, VCC2 at 5 V ±10%

TJ = –55°C to 136°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VOH High-level output voltage IOH = –4 mA; see Figure 6. 5-V side VCCO(1) – 0.8 4.6 V
3.3-V side VCCO – 0.4 3
IOH = –20 μA; see Figure 6 VCCO – 0.1 VCC
VOL Low-level output voltage IOL = 4 mA; see Figure 6. 0.2 0.4 V
IOL = 20 μA; see Figure 6. 0 0.1
VI(HYS) Input threshold voltage hysteresis 400 mV
IIH High-level input current INx at 0 V or VCCI(1) 10 μA
IIL Low-level input current –10 μA
CMTI Common-mode transient immunity VI = VCCI or 0 V; see Figure 8. 25 40 kV/μs
SUPPLY CURRENT (ALL INPUTS SWITCHING WITH SQUARE WAVE CLOCK SIGNAL FOR DYNAMIC ICC MEASUREMENT)
ICC1 Supply current for VCC1 DC to 1 Mbps VI = VCCI or 0 V, 15 pF load 1.5 3.5 mA
ICC2 Supply current for VCC2 2 4
(1) VCCI = Input-side power supply, VCCO = Output-side power supply

6.8 Electrical Characteristics: VCC1 and VCC2 at 3.3 V ±10%

TJ = –55°C to 136°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VOH High-level output voltage IOH = –4 mA; see Figure 6. VCCO(1) – 0.4 3 V
IOH = –20 μA; see Figure 6. VCCO – 0.1 3.3
VOL Low-level output voltage IOL = 4 mA; see Figure 6. 0.2 0.4 V
IOL = 20 μA; see Figure 6. 0 0.1
VI(HYS) Input threshold voltage hysteresis 400 mV
IIH High-level input current INx at 0 V or VCCI(1) 10 μA
IIL Low-level input current –10 μA
CMTI Common-mode transient immunity VI = VCCI or 0 V; seeFigure 8 . 25 40 kV/μs
SUPPLY CURRENT (ALL INPUTS SWITCHING WITH SQUARE WAVE CLOCK SIGNAL FOR DYNAMIC ICC MEASUREMENT)
ICC1 Supply current for VCC1 DC to 1 Mbps VI = VCCI or 0 V, 15 pF load 1.5 3.5 mA
ICC2 Supply current for VCC2 1.5 3.5
(1) VCCI = Input-side power supply, VCCO = Output-side power supply

6.9 Power Dissipation

THERMAL METRIC ISO7421-EP UNIT
D (SOIC)
8 PINS
PD Device power dissipation VCC1 = VCC2 = 5.25 V, TJ = 150°C, CL = 15 pF
Input a 1-Mbps 50% duty-cycle square wave
55 mW

6.10 Switching Characteristics: VCC1 and VCC2 at 5 V ±10%

TJ = –55°C to 136°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tPLH, tPHL Propagation delay time See Figure 6. 9 14 ns
PWD(1) Pulse width distortion |tPHL – tPLH| 0.3 4 ns
tsk(pp) Part-to-part skew time 4.9 ns
tsk(o) Channel-to-channel output skew time 3.6 ns
tr Output signal rise time See Figure 6. 1 ns
tf Output signal fall time 1 ns
tfs Fail-safe output delay time from input power loss See Figure 7. 6 μs
(1) Also known as pulse skew.

6.11 Switching Characteristics: VCC1 at 5 V ±10%, VCC2 at 3.3 V ±10%

TJ = –55°C to 136°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tPLH, tPHL Propagation delay time See Figure 6. 10 18.5 ns
PWD(1) Pulse width distortion |tPHL – tPLH| 0.5 6 ns
tsk(pp) Part-to-part skew time 6.3 ns
tsk(o) Channel-to-channel output skew time 7 ns
tr Output signal rise time See Figure 6. 2 ns
tf Output signal fall time 2 ns
tfs Fail-safe output delay time from input power loss See Figure 7. 6 μs
(1) Also known as pulse skew.

6.12 Switching Characteristics: VCC1 at 3.3 V ±10%, VCC2 at 5 V ±10%

TJ = –55°C to 136°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tPLH, tPHL Propagation delay time See Figure 6. 10 21 ns
PWD(1) Pulse width distortion |tPHL – tPLH| 0.5 4.5 ns
tsk(pp) Part-to-part skew time 8.5 ns
tsk(o) Channel-to-channel output skew time 10.8 ns
tr Output signal rise time See Figure 6. 2 ns
tf Output signal fall time 2 ns
tfs Fail-safe output delay time from input power loss See Figure 7. 6 μs
(1) Also known as pulse skew.

6.13 Switching Characteristics: VCC1 and VCC2 at 3.3 V ±10%

TJ = –55°C to 136°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tPLH, tPHL Propagation delay time See Figure 6. 12 22.5 ns
PWD(1) Pulse width distortion |tPHL – tPLH| 1 5.2 ns
tsk(pp) Part-to-part skew time 6.8 ns
tsk(o) Channel-to-channel output skew time 7.8 ns
tr Output signal rise time See Figure 6. 2 ns
tf Output signal fall time 2 ns
tfs Fail-safe output delay time from input power loss See Figure 7. 6 μs
(1) Also known as pulse skew.

6.14 Typical Characteristics

ISO7421-EP g004_lls984.gif Figure 1. Propagation Delay Time vs Free-Air Temperature
ISO7421-EP g006_lls984.gif Figure 3. Fail-Safe Voltage Threshold vs Free-Air Temperature
ISO7421-EP g008_lls984.gif Figure 5. Low-Level Output Current vs Low-Level Output Voltage
ISO7421-EP g005_lls984.gif Figure 2. Input Voltage Switching Threshold vs Free-Air Temperature
ISO7421-EP g007_lls984.gif Figure 4. High-Level Output Current vs High-Level Output Voltage