SLLSFW9A April   2024  – July 2024 ISO7741TA-Q1 , ISO7741TB-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Power Ratings
    6. 5.6  Insulation Specifications
    7. 5.7  Safety-Related Certifications
    8. 5.8  Safety Limiting Values
    9. 5.9  Electrical Characteristics Transformer
    10. 5.10 Electrical Characteristics—5V Supply
    11. 5.11 Supply Current Characteristics—5V Supply
    12. 5.12 Electrical Characteristics—3.3V Supply
    13. 5.13 Supply Current Characteristics—3.3V Supply
    14. 5.14 Electrical Characteristics—2.5V Supply 
    15. 5.15 Supply Current Characteristics—2.5V Supply
    16. 5.16 Switching Characteristics—5V Supply
    17. 5.17 Switching Characteristics—3.3V Supply
    18. 5.18 Switching Characteristics—2.5V Supply
    19. 5.19 Insulation Characteristics Curves
    20. 5.20 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Electromagnetic Compatibility (EMC) Considerations
      2. 7.3.2 Push-Pull Converter
      3. 7.3.3 Core Magnetization
    4. 7.4 Device Functional Modes
      1. 7.4.1 Device I/O Schematics
      2. 7.4.2 Start-Up Mode
      3. 7.4.3 Operating Mode
      4. 7.4.4 Spread Spectrum Clocking
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Drive Capability
        2. 8.2.2.2 LDO Selection
        3. 8.2.2.3 Diode Selection
        4. 8.2.2.4 Capacitor Selection
        5. 8.2.2.5 Transformer Selection
          1. 8.2.2.5.1 V-t Product Calculation
          2. 8.2.2.5.2 Turns Ratio Estimate
          3. 8.2.2.5.3 Recommended Transformers
      3. 8.2.3 Application Curve
        1. 8.2.3.1 Insulation Lifetime
      4. 8.2.4 System Examples
        1. 8.2.4.1 Higher Output Voltage Designs
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 PCB Material
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • DW|16
サーマルパッド・メカニカル・データ
発注情報

Device Functional Modes

Table 7-2 lists the functional modes for the ISO7741T devices.

Table 7-2 Function Table
VCCI1 VCCO INPUT
(INx)3
OUTPUT
(OUTx)
COMMENTS
PU PU H H Normal Operation:
A channel output assumes the logic state of the input.
L L
Open Default Default mode: When INx is open, the corresponding channel output goes to the default logic state. Default is High for ISO7741Tx and Low for ISO7741FTx.
PD PU X Default Default mode: When VCCI is unpowered, a channel output assumes the logic state based on the selected default option. Default is High for ISO7741Tx and Low for ISO7741FTx.
When VCCI transitions from unpowered to powered-up, a channel output assumes the logic state of the input.
When VCCI transitions from powered-up to unpowered, channel output assumes the selected default state.
X PD X Undetermined When VCCO is unpowered, a channel output is undetermined2.
When VCCO transitions from unpowered to powered-up, a channel output assumes the logic state of the input.
  1. VCCI = Input-side VCC; VCCO = Output-side VCC; PU = Powered up (VCC ≥ 2.25V); PD = Powered down (VCC ≤ 1.7V); X = Irrelevant; H = High level; L = Low level; Z = High Impedance
  2. The outputs are in undetermined state when 1.7V < VCCI, VCCO < 2.25V.
  3. A strongly driven input signal can weakly power the floating VCC through an internal protection diode and cause undetermined output.