SLLSEP8B July   2015  – June 2016 ISO7831

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Power Rating
    6. 6.6  Insulation Characteristics
    7. 6.7  Regulatory Information
    8. 6.8  Safety Limiting Values
    9. 6.9  Electrical Characteristics—5-V Supply
    10. 6.10 Supply Current Characteristics—5-V Supply
    11. 6.11 Electrical Characteristics—3.3-V Supply
    12. 6.12 Supply Current Characteristics—3.3-V Supply
    13. 6.13 Electrical Characteristics—2.5-V Supply
    14. 6.14 Supply Current Characteristics—2.5-V Supply
    15. 6.15 Switching Characteristics—5-V Supply
    16. 6.16 Switching Characteristics—3.3-V Supply
    17. 6.17 Switching Characteristics—2.5-V Supply
    18. 6.18 Insulation Characteristics Curves
    19. 6.19 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Electromagnetic Compatibility (EMC) Considerations
    4. 8.4 Device Functional Modes
      1. 8.4.1 Device I/O Schematics
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 PCB Material
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Related Links
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Community Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • DWW|16
  • DW|16
サーマルパッド・メカニカル・データ
発注情報

6 Specifications

6.1 Absolute Maximum Ratings

See (1)
MIN MAX UNIT
VCC1
VCC2
Supply voltage(2) –0.5 6 V
V Voltage at INx, OUTx, or ENx –0.5 VCCx + 0.5(3) V
IO Output current –15 15 mA
TJ Junction temperature –55 150 °C
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak voltage values.
(3) Maximum voltage must not exceed 6 V

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±6000 V
Charged device model (CDM), per JEDEC specification JESD22-C101(2) ±1500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

MIN NOM MAX UNIT
VCC1, VCC2 Supply voltage 2.25 5.5 V
IOH High-level output current VCCO(1) = 5 V –4 mA
VCCO(1) = 3.3 V –2
VCCO(1) = 2.5 V –1
IOL Low-level output current VCCO(1) = 5 V 4 mA
VCCO(1) = 3.3 V 2
VCCO(1) = 2.5 V 1
VIH High-level input voltage 0.7 × VCCI(1) VCCI(1) V
VIL Low-level input voltage 0 0.3 × VCCI(1) V
DR Signaling rate 0 100 Mbps
TA Ambient temperature –55 25 125 °C
(1) VCCI = Input-side VCC; VCCO = Output-side VCC.

6.4 Thermal Information

THERMAL METRIC(1) ISO7831 UNIT
DW (SOIC) DWW (SOIC)
16 PINS 16 PINS
RθJA Junction-to-ambient thermal resistance 81.1 83.4 °C/W
RθJC(top) Junction-to-case(top) thermal resistance 43.8 45.2 °C/W
RθJB Junction-to-board thermal resistance 45.7 54.1 °C/W
ψJT Junction-to-top characterization parameter 17.0 17.6 °C/W
ψJB Junction-to-board characterization parameter 45.2 53.3 °C/W
RθJC(bottom) Junction-to-case(bottom) thermal resistance °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Power Rating

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
PD Maximum power dissipation VCC1 = VCC2 = 5.5 V, TJ = 150°C,
CL = 15 pF, input a 50 MHz 50% duty cycle square wave
150 mW
PD1 Maximum power dissipation by side-1 50 mW
PD2 Maximum power dissipation by side-2 100 mW

6.6 Insulation Characteristics

PARAMETER TEST CONDITIONS SPECIFICATION UNIT
DW DWW
CLR External clearance(1) Shortest terminal-to-terminal distance through air >8 >14.5 mm
CPG External creepage(1) Shortest terminal-to-terminal distance across the package surface >8 >14.5 mm
DTI Distance through the insulation Minimum internal gap (internal clearance) >21 >21 μm
CTI Comparative tracking index DIN EN 60112 (VDE 0303-11); IEC 60112; UL 746A >600 >600 V
Material group I I
Overvoltage category per IEC 60664-1 Rated mains voltage ≤ 600 VRMS I–IV I–IV
Rated mains voltage ≤ 1000 VRMS I–III I–IV
DIN V VDE V 0884–10 (VDE V 0884–10):2006-12(2)
VIOWM Maximum isolation working voltage Time dependent dielectric breakdown (TDDB) Test; see Figure 1 and Figure 2 1500 2000 VRMS
2121 2828 VDC
VIOTM Maximum transient isolation voltage VTEST = VIOTM
t = 60 s (qualification)
t= 1 s (100% production)
8000 8000 VPK
VIOSM Maximum surge isolation voltage for reinforced insulation(3) Test method per IEC 60065, 1.2/50 µs waveform,
VTEST = 1.6 × VIOSM = 12800 VPK (qualification)
8000 8000 VPK
VIORM Maximum repetitive peak isolation voltage 2121 2828 VPK
VPR Input-to-output test voltage Method a, After Input/Output safety test subgroup 2/3,
VPR = VIORM × 1.2, t = 10 s,
Partial discharge < 5 pC
2545 3394 VPK
Method a, After environmental tests subgroup 1,
VPR = VIORM × 1.6, t = 10 s,
Partial Discharge < 5 pC
3394 4525
Method b1,
VPR = VIORM × 1.875, t = 1 s (100% Production test)
Partial discharge < 5 pC
3977 5303
CIO Barrier capacitance, input to output(4) VIO = 0.4 × sin (2πft), f = 1 MHz ~1 ~1 pF
RIO Isolation resistance, input to output(4) VIO = 500 V, TA = 25°C >1012 >1012 Ω
VIO = 500 V, 100°C ≤ TA ≤ max >1011 >1011 Ω
RS Isolation resistance VIO = 500 V at TS >109 >109 Ω
Pollution degree 2 2
Climatic category 55/125/21 55/125/21
UL 1577
VISO Withstanding isolation voltage VTEST = VISO = 5700 VRMS, t = 60 s (qualification),
VTEST = 1.2 × VISO = 6840 VRMS, t = 1 s (100% production)
5700 5700 VRMS
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.
(4) All pins on each side of the barrier tied together creating a two-terminal device.

6.7 Regulatory Information

All DW package certifications are complete. DWW package certifications are complete for UL, VDE and TUV and planned for CSA and CQC.
VDE CSA UL CQC TUV
Certified according to DIN V VDE V 0884–10 (VDE V 0884–10):2006-12 and DIN EN 60950-1 (VDE 0805 Teil 1):2011-01 Approved under CSA Component Acceptance Notice 5A, IEC 60950-1 and IEC 60601-1 Certified according to UL 1577 Component Recognition Program Certified according to GB 4943.1-2011 Certified according to
EN 61010-1:2010 (3rd Ed) and
EN 60950-1:2006/A11:2009/A1:2010/
A12:2011/A2:2013
Reinforced insulation
Maximum transient isolation voltage, 8000 VPK;
Maximum repetitive peak isolation voltage, 2121 VPK (DW), 2828 VPK (DWW);
Maximum surge isolation voltage, 8000 VPK
Reinforced insulation per CSA 60950-1-07+A1+A2 and IEC 60950-1 2nd Ed., 800 VRMS (DW) and 1450 VRMS (DWW) maximum working voltage (pollution degree 2, material group I); Single protection, 5700 VRMS Reinforced Insulation, Altitude ≤ 5000 m, Tropical Climate, 250 VRMS maximum working voltage 5700 VRMS Reinforced insulation per
EN 61010-1:2010 (3rd Ed) up to working voltage of 600 VRMS (DW package) and 1000 VRMS (DWW package)
2 MOPP (Means of Patient Protection) per CSA 60601-1:14 and IEC 60601-1 Ed. 3.1, 250 VRMS (354 VPK) maximum working voltage 5700 VRMS Reinforced insulation per
EN 60950-1:2006/A11:2009/A1:2010/
A12:2011/A2:2013 up to working voltage of 800 VRMS (DW package) and 1450 VRMS (DWW package)
Certificate number: 40040142 Master contract number: 220991 File number: E181974 Certificate number: CQC15001121716 Client ID number: 77311

6.8 Safety Limiting Values

Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier potentially leading to secondary system failures.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
DW PACKAGE
IS Safety input, output, or supply current RθJA = 81.1°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C, see Figure 3 280 mA
RθJA = 81.1°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C, see Figure 3 428
RθJA = 81.1°C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C, see Figure 3 560
PS Safety input, output, or total power RθJA = 81.1°C/W, TJ = 150°C, TA = 25°C, see Figure 5 1541 mW
TS Maximum safety temperature 150 °C
DWW PACKAGE
IS Safety input, output, or supply current RθJA = 83.4°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C, see Figure 4 273 mA
RθJA = 83.4°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C, see Figure 4 416
RθJA = 83.4°C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C, see Figure 4 545
PS Safety input, output, or total power RθJA = 83.4°C/W, TJ = 150°C, TA = 25°C, see Figure 6 1499 mW
TS Maximum safety temperature 150 °C

The maximum safety temperature is the maximum junction temperature specified for the device. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the Thermal Information is that of a device installed on a high-K test board for leaded surface mount packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.

6.9 Electrical Characteristics—5-V Supply

VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VOH High-level output voltage IOH = –4 mA; see Figure 13 VCCO(1) – 0.4 VCCO – 0.2 V
VOL Low-level output voltage IOL = 4 mA; see Figure 13 0.2 0.4 V
VI(HYS) Input threshold voltage hysteresis 0.1 × VCCI(1) V
IIH High-level input current VIH = VCCI at INx or ENx 10 μA
IIL Low-level input current VIL = 0 V at INx or ENx –10 μA
CMTI Common-mode transient immunity VI = VCCI or 0 V, VCM = 1500 V; see Figure 16 100 kV/μs
CI Input capacitance (2) VI = VCC / 2 + 0.4 × sin (2πft), f = 1 MHz, VCC = 5 V 2 pF
(1) VCCI = Input-side VCC; VCCO = Output-side VCC.
(2) Measured from input pin to ground.

6.10 Supply Current Characteristics—5-V Supply

VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted)
PARAMETER TEST CONDITIONS SUPPLY CURRENT MIN TYP MAX UNIT
Supply current - disable EN1 = EN2 = 0 V, VI = 0 V (Devices with suffix F),
VI = VCCI (Devices without suffix F)
ICC1 1 1.6 mA
ICC2 0.8 1.3
EN2 = 0 V, VI = VCCI (Devices with suffix F),
VI = 0 V (Devices without suffix F)
ICC1 3.3 4.8
ICC2 2 2.9
Supply current - DC signal VI = 0 V (Devices with suffix F),
VI = VCCI (Devices without suffix F)
ICC1 1.4 2.3
ICC2 1.7 2.6
VI = VCCI (Devices with suffix F),
VI = 0 V (Devices without suffix F)
ICC1 3.8 5.6
ICC2 3 4.3
Supply current - AC signal All channels switching with square wave clock input;
CL = 15 pF
1 Mbps ICC1 2.6 4
ICC2 2.4 3.6
10 Mbps ICC1 3.2 4.5
ICC2 3.4 4.6
100 Mbps ICC1 8.7 10.5
ICC2 13.2 15.8

6.11 Electrical Characteristics—3.3-V Supply

VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VOH High-level output voltage IOH = –2 mA; see Figure 13 VCCO(1) – 0.4 VCCO – 0.2 V
VOL Low-level output voltage IOL = 2 mA; see Figure 13 0.2 0.4 V
VI(HYS) Input threshold voltage hysteresis 0.1 × VCCI(1) V
IIH High-level input current VIH = VCCI at INx or ENx 10 μA
IIL Low-level input current VIL = 0 V at INx or ENx –10 μA
CMTI Common-mode transient immunity VI = VCCI or 0 V, VCM = 1500 V; see Figure 16 100 kV/μs
(1) VCCI = Input-side VCC; VCCO = Output-side VCC.

6.12 Supply Current Characteristics—3.3-V Supply

VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted)
PARAMETER TEST CONDITIONS SUPPLY CURRENT MIN TYP MAX UNIT
Supply current - disable EN1 = EN2 = 0 V, VI = 0 V (Devices with suffix F),
VI = VCCI (Devices without suffix F)
ICC1 1 1.6 mA
ICC2 0.8 1.3
EN1 = EN2 = 0 V, VI = VCCI (Devices with suffix F),
VI = 0 V (Devices without suffix F)
ICC1 3.3 4.8
ICC2 1.9 2.9
Supply current - DC signal VI = 0 V (Devices with suffix F),
VI = VCCI (Devices without suffix F)
ICC1 1.4 2.3
ICC2 1.7 2.6
VI = VCCI (Devices with suffix F),
VI = 0 V (Devices without suffix F)
ICC1 3.8 5.6
ICC2 2.9 4.3
Supply current - AC signal All channels switching with square wave clock input;
CL = 15 pF
1 Mbps ICC1 2.6 4
ICC2 2.4 3.5
10 Mbps ICC1 3 4.3
ICC2 3.1 4.3
100 Mbps ICC1 6.9 8.3
ICC2 10.1 12.2

6.13 Electrical Characteristics—2.5-V Supply

VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VOH High-level output voltage IOH = –1 mA; see Figure 13 VCCO(1) – 0.4 VCCO – 0.2 V
VOL Low-level output voltage IOL = 1 mA; see Figure 13 0.2 0.4 V
VI(HYS) Input threshold voltage hysteresis 0.1 × VCCI(1) V
IIH High-level input current VIH = VCCI at INx or ENx 10 μA
IIL Low-level input current VIL = 0 V at INx or ENx –10 μA
CMTI Common-mode transient immunity VI = VCCI or 0 V, VCM = 1500 V; see Figure 16 100 kV/μs
(1) VCCI = Input-side VCC; VCCO = Output-side VCC.

6.14 Supply Current Characteristics—2.5-V Supply

VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted)
PARAMETER TEST CONDITIONS SUPPLY CURRENT MIN TYP MAX UNIT
Supply current - disable EN1 = EN2 = 0 V, VI = 0 V (Devices with suffix F),
VI = VCCI (Devices without suffix F)
ICC1 0.9 1.6 mA
ICC2 0.8 1.3
EN1 = EN2 = 0 V, VI = VCCI (Devices with suffix F),
VI = 0 V (Devices without suffix F)
ICC1 3.3 4.8
ICC2 1.9 2.9
Supply current - DC signal VI = 0 V (Devices with suffix F),
VI = VCCI (Devices without suffix F)
ICC1 1.4 2.3
ICC2 1.7 2.6
VI = VCCI (Devices with suffix F),
VI = 0 V (Devices without suffix F)
ICC1 3.8 5.6
ICC2 2.9 4.3
Supply current - AC signal All channels switching with square wave clock input;
CL = 15 pF
1 Mbps ICC1 2.6 4
ICC2 2.3 3.5
10 Mbps ICC1 2.9 4.3
ICC2 2.9 4.1
100 Mbps ICC1 5.8 7.2
ICC2 8.2 10

6.15 Switching Characteristics—5-V Supply

VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tPLH, tPHL Propagation delay time See Figure 13 6 11 16 ns
PWD Pulse width distortion(1) |tPHL – tPLH| 0.55 4.1 ns
tsk(o) Channel-to-channel output skew time(2) Same-direction channels 2.5 ns
tsk(pp) Part-to-part skew time(3) 4.5 ns
tr Output signal rise time See Figure 13 1.7 3.9 ns
tf Output signal fall time 1.9 3.9 ns
tPHZ Disable propagation delay, high-to-high impedance output See Figure 14 12 20 ns
tPLZ Disable propagation delay, low-to-high impedance output 12 20 ns
tPZH Enable propagation delay, high impedance-to-high output for ISO7831 10 20 ns
Enable propagation delay, high impedance-to-high output for ISO7831F 2 2.5 μs
tPZL Enable propagation delay, high impedance-to-low output for ISO7831 2 2.5 μs
Enable propagation delay, high impedance-to-low output for ISO7831F 10 20 ns
tDO Default output delay time from input power loss Measured from the time VCC goes below 1.7 V. See Figure 15 0.2 9 μs
tie Time interval error 216 – 1 PRBS data at 100 Mbps 0.90 ns
(1) Also known as pulse skew.
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

6.16 Switching Characteristics—3.3-V Supply

VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tPLH, tPHL Propagation delay time See Figure 13 6 10.8 16 ns
PWD Pulse width distortion(1) |tPHL – tPLH| 0.7 4.2 ns
tsk(o) Channel-to-channel output skew time(2) Same-direction channels 2.2 ns
tsk(pp) Part-to-part skew time(3) 4.5 ns
tr Output signal rise time See Figure 13 0.8 3 ns
tf Output signal fall time 0.8 3 ns
tPHZ Disable propagation delay, high-to-high impedance output See Figure 14 17 32 ns
tPLZ Disable propagation delay, low-to-high impedance output 17 32 ns
tPZH Enable propagation delay, high impedance-to-high output for ISO7831 17 32 ns
Enable propagation delay, high impedance-to-high output for ISO7831F 2 2.5 μs
tPZL Enable propagation delay, high impedance-to-low output for ISO7831 2 2.5 μs
Enable propagation delay, high impedance-to-low output for ISO7831F 17 32 ns
tDO Default output delay time from input power loss Measured from the time VCC goes below 1.7 V. See Figure 15 0.2 9 μs
tie Time interval error 216 – 1 PRBS data at 100 Mbps 0.91 ns
(1) Also known as pulse skew.
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

6.17 Switching Characteristics—2.5-V Supply

VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tPLH, tPHL Propagation delay time See Figure 13 7.5 11.7 17.5 ns
PWD Pulse width distortion(1) |tPHL – tPLH| 0.66 4.2 ns
tsk(o) Channel-to-channel output skew time(2) Same-direction Channels 2.2 ns
tsk(pp) Part-to-part skew time(3) 4.5 ns
tr Output signal rise time See Figure 13 1 3.5 ns
tf Output signal fall time 1.2 3.5 ns
tPHZ Disable propagation delay, high-to-high impedance output See Figure 14 22 45 ns
tPLZ Disable propagation delay, low-to-high impedance output 22 45 ns
tPZH Enable propagation delay, high impedance-to-high output for ISO7831 18 45 ns
Enable propagation delay, high impedance-to-high output for ISO7831F 2 2.5 μs
tPZL Enable propagation delay, high impedance-to-low output for ISO7831 2 2.5 μs
Enable propagation delay, high impedance-to-low output for ISO7831F 18 45 ns
tDO Default output delay time from input power loss Measured from the time VCC goes below 1.7 V. See Figure 15 0.2 9 μs
tie Time interval error 216 – 1 PRBS data at 100 Mbps 0.91 ns
(1) Also known as pulse skew.
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

6.18 Insulation Characteristics Curves

ISO7831 ISO7831F tddb_curve_reinforced_dw.gif
TA upto 150°C Operating lifetime = 135 years
Stress-voltage frequency = 60 Hz
Isolation working voltage = 1500 VRMS
Figure 1. Reinforced Isolation Capacitor Lifetime Projection for Devices in DW Package
ISO7831 ISO7831F D014_sllseo2.gif Figure 3. Thermal Derating Curve for Safety Limiting Current for DW Package
ISO7831 ISO7831F D016_sllseo2.gif Figure 5. Thermal Derating Curve for Safety Limiting Power for DW Package
ISO7831 ISO7831F tddb_curve_reinforced_dww.gif
TA upto 150°C Operating lifetime = 34 years
Stress-voltage frequency = 60 Hz
Isolation working voltage = 2000 VRMS
Figure 2. Reinforced Isolation Capacitor Lifetime Projection for Devices in DWW Package
ISO7831 ISO7831F D015_sllseo2.gif Figure 4. Thermal Derating Curve for Safety Limiting Current for DWW Package
ISO7831 ISO7831F D017_sllseo2.gif Figure 6. Thermal Derating Curve for Safety Limiting Power for DWW Package

6.19 Typical Characteristics

ISO7831 ISO7831F D001_SLLSEP8.gif
TA = 25°C CL = 15 pF
Figure 7. Supply Current vs Data Rate (With 15-pF Load)
ISO7831 ISO7831F D003_SLLSEJ0.gif
TA = 25°C
Figure 9. High-Level Output Voltage vs High-level Output Current
ISO7831 ISO7831F D005_SLLSEJ0.gif
Figure 11. Power Supply Undervoltage Threshold vs Free-Air Temperature
ISO7831 ISO7831F D002_SLLSEP8.gif
TA = 25°C CL = No Load
Figure 8. Supply Current vs Data Rate (With No Load)
ISO7831 ISO7831F D004_SLLSEJ0.gif
TA = 25°C
Figure 10. Low-Level Output Voltage vs Low-Level Output Current
ISO7831 ISO7831F D006_SLLSEJ0.gif
Figure 12. Propagation Delay Time vs Free-Air Temperature