SLLSEP8B July 2015 – June 2016 ISO7831
PRODUCTION DATA.
デバイスごとのパッケージ図は、PDF版データシートをご参照ください。
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
VCC1
VCC2 |
Supply voltage(2) | –0.5 | 6 | V | |
V | Voltage at INx, OUTx, or ENx | –0.5 | VCCx + 0.5(3) | V | |
IO | Output current | –15 | 15 | mA | |
TJ | Junction temperature | –55 | 150 | °C | |
Tstg | Storage temperature | –65 | 150 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±6000 | V |
Charged device model (CDM), per JEDEC specification JESD22-C101(2) | ±1500 |
MIN | NOM | MAX | UNIT | |||
---|---|---|---|---|---|---|
VCC1, VCC2 | Supply voltage | 2.25 | 5.5 | V | ||
IOH | High-level output current | VCCO(1) = 5 V | –4 | mA | ||
VCCO(1) = 3.3 V | –2 | |||||
VCCO(1) = 2.5 V | –1 | |||||
IOL | Low-level output current | VCCO(1) = 5 V | 4 | mA | ||
VCCO(1) = 3.3 V | 2 | |||||
VCCO(1) = 2.5 V | 1 | |||||
VIH | High-level input voltage | 0.7 × VCCI(1) | VCCI(1) | V | ||
VIL | Low-level input voltage | 0 | 0.3 × VCCI(1) | V | ||
DR | Signaling rate | 0 | 100 | Mbps | ||
TA | Ambient temperature | –55 | 25 | 125 | °C |
THERMAL METRIC(1) | ISO7831 | UNIT | |||
---|---|---|---|---|---|
DW (SOIC) | DWW (SOIC) | ||||
16 PINS | 16 PINS | ||||
RθJA | Junction-to-ambient thermal resistance | 81.1 | 83.4 | °C/W | |
RθJC(top) | Junction-to-case(top) thermal resistance | 43.8 | 45.2 | °C/W | |
RθJB | Junction-to-board thermal resistance | 45.7 | 54.1 | °C/W | |
ψJT | Junction-to-top characterization parameter | 17.0 | 17.6 | °C/W | |
ψJB | Junction-to-board characterization parameter | 45.2 | 53.3 | °C/W | |
RθJC(bottom) | Junction-to-case(bottom) thermal resistance | — | — | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
PD | Maximum power dissipation | VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, input a 50 MHz 50% duty cycle square wave |
150 | mW | ||
PD1 | Maximum power dissipation by side-1 | 50 | mW | |||
PD2 | Maximum power dissipation by side-2 | 100 | mW |
PARAMETER | TEST CONDITIONS | SPECIFICATION | UNIT | ||
---|---|---|---|---|---|
DW | DWW | ||||
CLR | External clearance(1) | Shortest terminal-to-terminal distance through air | >8 | >14.5 | mm |
CPG | External creepage(1) | Shortest terminal-to-terminal distance across the package surface | >8 | >14.5 | mm |
DTI | Distance through the insulation | Minimum internal gap (internal clearance) | >21 | >21 | μm |
CTI | Comparative tracking index | DIN EN 60112 (VDE 0303-11); IEC 60112; UL 746A | >600 | >600 | V |
Material group | I | I | |||
Overvoltage category per IEC 60664-1 | Rated mains voltage ≤ 600 VRMS | I–IV | I–IV | ||
Rated mains voltage ≤ 1000 VRMS | I–III | I–IV | |||
DIN V VDE V 0884–10 (VDE V 0884–10):2006-12(2) | |||||
VIOWM | Maximum isolation working voltage | Time dependent dielectric breakdown (TDDB) Test; see Figure 1 and Figure 2 | 1500 | 2000 | VRMS |
2121 | 2828 | VDC | |||
VIOTM | Maximum transient isolation voltage | VTEST = VIOTM
t = 60 s (qualification) t= 1 s (100% production) |
8000 | 8000 | VPK |
VIOSM | Maximum surge isolation voltage for reinforced insulation(3) | Test method per IEC 60065, 1.2/50 µs waveform, VTEST = 1.6 × VIOSM = 12800 VPK (qualification) |
8000 | 8000 | VPK |
VIORM | Maximum repetitive peak isolation voltage | 2121 | 2828 | VPK | |
VPR | Input-to-output test voltage | Method a, After Input/Output safety test subgroup 2/3, VPR = VIORM × 1.2, t = 10 s, Partial discharge < 5 pC |
2545 | 3394 | VPK |
Method a, After environmental tests subgroup 1, VPR = VIORM × 1.6, t = 10 s, Partial Discharge < 5 pC |
3394 | 4525 | |||
Method b1, VPR = VIORM × 1.875, t = 1 s (100% Production test) Partial discharge < 5 pC |
3977 | 5303 | |||
CIO | Barrier capacitance, input to output(4) | VIO = 0.4 × sin (2πft), f = 1 MHz | ~1 | ~1 | pF |
RIO | Isolation resistance, input to output(4) | VIO = 500 V, TA = 25°C | >1012 | >1012 | Ω |
VIO = 500 V, 100°C ≤ TA ≤ max | >1011 | >1011 | Ω | ||
RS | Isolation resistance | VIO = 500 V at TS | >109 | >109 | Ω |
Pollution degree | 2 | 2 | |||
Climatic category | 55/125/21 | 55/125/21 | |||
UL 1577 | |||||
VISO | Withstanding isolation voltage | VTEST = VISO = 5700 VRMS, t = 60 s (qualification), VTEST = 1.2 × VISO = 6840 VRMS, t = 1 s (100% production) |
5700 | 5700 | VRMS |
VDE | CSA | UL | CQC | TUV |
---|---|---|---|---|
Certified according to DIN V VDE V 0884–10 (VDE V 0884–10):2006-12 and DIN EN 60950-1 (VDE 0805 Teil 1):2011-01 | Approved under CSA Component Acceptance Notice 5A, IEC 60950-1 and IEC 60601-1 | Certified according to UL 1577 Component Recognition Program | Certified according to GB 4943.1-2011 | Certified according to EN 61010-1:2010 (3rd Ed) and EN 60950-1:2006/A11:2009/A1:2010/ A12:2011/A2:2013 |
Reinforced insulation Maximum transient isolation voltage, 8000 VPK; Maximum repetitive peak isolation voltage, 2121 VPK (DW), 2828 VPK (DWW); Maximum surge isolation voltage, 8000 VPK |
Reinforced insulation per CSA 60950-1-07+A1+A2 and IEC 60950-1 2nd Ed., 800 VRMS (DW) and 1450 VRMS (DWW) maximum working voltage (pollution degree 2, material group I); | Single protection, 5700 VRMS | Reinforced Insulation, Altitude ≤ 5000 m, Tropical Climate, 250 VRMS maximum working voltage | 5700 VRMS Reinforced insulation per EN 61010-1:2010 (3rd Ed) up to working voltage of 600 VRMS (DW package) and 1000 VRMS (DWW package) |
2 MOPP (Means of Patient Protection) per CSA 60601-1:14 and IEC 60601-1 Ed. 3.1, 250 VRMS (354 VPK) maximum working voltage | 5700 VRMS Reinforced insulation per EN 60950-1:2006/A11:2009/A1:2010/ A12:2011/A2:2013 up to working voltage of 800 VRMS (DW package) and 1450 VRMS (DWW package) |
|||
Certificate number: 40040142 | Master contract number: 220991 | File number: E181974 | Certificate number: CQC15001121716 | Client ID number: 77311 |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
DW PACKAGE | ||||||
IS | Safety input, output, or supply current | RθJA = 81.1°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C, see Figure 3 | 280 | mA | ||
RθJA = 81.1°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C, see Figure 3 | 428 | |||||
RθJA = 81.1°C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C, see Figure 3 | 560 | |||||
PS | Safety input, output, or total power | RθJA = 81.1°C/W, TJ = 150°C, TA = 25°C, see Figure 5 | 1541 | mW | ||
TS | Maximum safety temperature | 150 | °C | |||
DWW PACKAGE | ||||||
IS | Safety input, output, or supply current | RθJA = 83.4°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C, see Figure 4 | 273 | mA | ||
RθJA = 83.4°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C, see Figure 4 | 416 | |||||
RθJA = 83.4°C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C, see Figure 4 | 545 | |||||
PS | Safety input, output, or total power | RθJA = 83.4°C/W, TJ = 150°C, TA = 25°C, see Figure 6 | 1499 | mW | ||
TS | Maximum safety temperature | 150 | °C |
The maximum safety temperature is the maximum junction temperature specified for the device. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the Thermal Information is that of a device installed on a high-K test board for leaded surface mount packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
VOH | High-level output voltage | IOH = –4 mA; see Figure 13 | VCCO(1) – 0.4 | VCCO – 0.2 | V | ||
VOL | Low-level output voltage | IOL = 4 mA; see Figure 13 | 0.2 | 0.4 | V | ||
VI(HYS) | Input threshold voltage hysteresis | 0.1 × VCCI(1) | V | ||||
IIH | High-level input current | VIH = VCCI at INx or ENx | 10 | μA | |||
IIL | Low-level input current | VIL = 0 V at INx or ENx | –10 | μA | |||
CMTI | Common-mode transient immunity | VI = VCCI or 0 V, VCM = 1500 V; see Figure 16 | 100 | kV/μs | |||
CI | Input capacitance (2) | VI = VCC / 2 + 0.4 × sin (2πft), f = 1 MHz, VCC = 5 V | 2 | pF |
PARAMETER | TEST CONDITIONS | SUPPLY CURRENT | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|---|
Supply current - disable | EN1 = EN2 = 0 V, VI = 0 V (Devices with suffix F), VI = VCCI (Devices without suffix F) |
ICC1 | 1 | 1.6 | mA | ||
ICC2 | 0.8 | 1.3 | |||||
EN2 = 0 V, VI = VCCI (Devices with suffix F), VI = 0 V (Devices without suffix F) |
ICC1 | 3.3 | 4.8 | ||||
ICC2 | 2 | 2.9 | |||||
Supply current - DC signal | VI = 0 V (Devices with suffix F), VI = VCCI (Devices without suffix F) |
ICC1 | 1.4 | 2.3 | |||
ICC2 | 1.7 | 2.6 | |||||
VI = VCCI (Devices with suffix F), VI = 0 V (Devices without suffix F) |
ICC1 | 3.8 | 5.6 | ||||
ICC2 | 3 | 4.3 | |||||
Supply current - AC signal | All channels switching with square wave clock input; CL = 15 pF |
1 Mbps | ICC1 | 2.6 | 4 | ||
ICC2 | 2.4 | 3.6 | |||||
10 Mbps | ICC1 | 3.2 | 4.5 | ||||
ICC2 | 3.4 | 4.6 | |||||
100 Mbps | ICC1 | 8.7 | 10.5 | ||||
ICC2 | 13.2 | 15.8 |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
VOH | High-level output voltage | IOH = –2 mA; see Figure 13 | VCCO(1) – 0.4 | VCCO – 0.2 | V | ||
VOL | Low-level output voltage | IOL = 2 mA; see Figure 13 | 0.2 | 0.4 | V | ||
VI(HYS) | Input threshold voltage hysteresis | 0.1 × VCCI(1) | V | ||||
IIH | High-level input current | VIH = VCCI at INx or ENx | 10 | μA | |||
IIL | Low-level input current | VIL = 0 V at INx or ENx | –10 | μA | |||
CMTI | Common-mode transient immunity | VI = VCCI or 0 V, VCM = 1500 V; see Figure 16 | 100 | kV/μs |
PARAMETER | TEST CONDITIONS | SUPPLY CURRENT | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|---|
Supply current - disable | EN1 = EN2 = 0 V, VI = 0 V (Devices with suffix F), VI = VCCI (Devices without suffix F) |
ICC1 | 1 | 1.6 | mA | ||
ICC2 | 0.8 | 1.3 | |||||
EN1 = EN2 = 0 V, VI = VCCI (Devices with suffix F), VI = 0 V (Devices without suffix F) |
ICC1 | 3.3 | 4.8 | ||||
ICC2 | 1.9 | 2.9 | |||||
Supply current - DC signal | VI = 0 V (Devices with suffix F), VI = VCCI (Devices without suffix F) |
ICC1 | 1.4 | 2.3 | |||
ICC2 | 1.7 | 2.6 | |||||
VI = VCCI (Devices with suffix F), VI = 0 V (Devices without suffix F) |
ICC1 | 3.8 | 5.6 | ||||
ICC2 | 2.9 | 4.3 | |||||
Supply current - AC signal | All channels switching with square wave clock input; CL = 15 pF |
1 Mbps | ICC1 | 2.6 | 4 | ||
ICC2 | 2.4 | 3.5 | |||||
10 Mbps | ICC1 | 3 | 4.3 | ||||
ICC2 | 3.1 | 4.3 | |||||
100 Mbps | ICC1 | 6.9 | 8.3 | ||||
ICC2 | 10.1 | 12.2 |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
VOH | High-level output voltage | IOH = –1 mA; see Figure 13 | VCCO(1) – 0.4 | VCCO – 0.2 | V | ||
VOL | Low-level output voltage | IOL = 1 mA; see Figure 13 | 0.2 | 0.4 | V | ||
VI(HYS) | Input threshold voltage hysteresis | 0.1 × VCCI(1) | V | ||||
IIH | High-level input current | VIH = VCCI at INx or ENx | 10 | μA | |||
IIL | Low-level input current | VIL = 0 V at INx or ENx | –10 | μA | |||
CMTI | Common-mode transient immunity | VI = VCCI or 0 V, VCM = 1500 V; see Figure 16 | 100 | kV/μs |
PARAMETER | TEST CONDITIONS | SUPPLY CURRENT | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|---|
Supply current - disable | EN1 = EN2 = 0 V, VI = 0 V (Devices with suffix F), VI = VCCI (Devices without suffix F) |
ICC1 | 0.9 | 1.6 | mA | ||
ICC2 | 0.8 | 1.3 | |||||
EN1 = EN2 = 0 V, VI = VCCI (Devices with suffix F), VI = 0 V (Devices without suffix F) |
ICC1 | 3.3 | 4.8 | ||||
ICC2 | 1.9 | 2.9 | |||||
Supply current - DC signal | VI = 0 V (Devices with suffix F), VI = VCCI (Devices without suffix F) |
ICC1 | 1.4 | 2.3 | |||
ICC2 | 1.7 | 2.6 | |||||
VI = VCCI (Devices with suffix F), VI = 0 V (Devices without suffix F) |
ICC1 | 3.8 | 5.6 | ||||
ICC2 | 2.9 | 4.3 | |||||
Supply current - AC signal | All channels switching with square wave clock input; CL = 15 pF |
1 Mbps | ICC1 | 2.6 | 4 | ||
ICC2 | 2.3 | 3.5 | |||||
10 Mbps | ICC1 | 2.9 | 4.3 | ||||
ICC2 | 2.9 | 4.1 | |||||
100 Mbps | ICC1 | 5.8 | 7.2 | ||||
ICC2 | 8.2 | 10 |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
tPLH, tPHL | Propagation delay time | See Figure 13 | 6 | 11 | 16 | ns | |
PWD | Pulse width distortion(1) |tPHL – tPLH| | 0.55 | 4.1 | ns | |||
tsk(o) | Channel-to-channel output skew time(2) | Same-direction channels | 2.5 | ns | |||
tsk(pp) | Part-to-part skew time(3) | 4.5 | ns | ||||
tr | Output signal rise time | See Figure 13 | 1.7 | 3.9 | ns | ||
tf | Output signal fall time | 1.9 | 3.9 | ns | |||
tPHZ | Disable propagation delay, high-to-high impedance output | See Figure 14 | 12 | 20 | ns | ||
tPLZ | Disable propagation delay, low-to-high impedance output | 12 | 20 | ns | |||
tPZH | Enable propagation delay, high impedance-to-high output for ISO7831 | 10 | 20 | ns | |||
Enable propagation delay, high impedance-to-high output for ISO7831F | 2 | 2.5 | μs | ||||
tPZL | Enable propagation delay, high impedance-to-low output for ISO7831 | 2 | 2.5 | μs | |||
Enable propagation delay, high impedance-to-low output for ISO7831F | 10 | 20 | ns | ||||
tDO | Default output delay time from input power loss | Measured from the time VCC goes below 1.7 V. See Figure 15 | 0.2 | 9 | μs | ||
tie | Time interval error | 216 – 1 PRBS data at 100 Mbps | 0.90 | ns |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
tPLH, tPHL | Propagation delay time | See Figure 13 | 6 | 10.8 | 16 | ns | |
PWD | Pulse width distortion(1) |tPHL – tPLH| | 0.7 | 4.2 | ns | |||
tsk(o) | Channel-to-channel output skew time(2) | Same-direction channels | 2.2 | ns | |||
tsk(pp) | Part-to-part skew time(3) | 4.5 | ns | ||||
tr | Output signal rise time | See Figure 13 | 0.8 | 3 | ns | ||
tf | Output signal fall time | 0.8 | 3 | ns | |||
tPHZ | Disable propagation delay, high-to-high impedance output | See Figure 14 | 17 | 32 | ns | ||
tPLZ | Disable propagation delay, low-to-high impedance output | 17 | 32 | ns | |||
tPZH | Enable propagation delay, high impedance-to-high output for ISO7831 | 17 | 32 | ns | |||
Enable propagation delay, high impedance-to-high output for ISO7831F | 2 | 2.5 | μs | ||||
tPZL | Enable propagation delay, high impedance-to-low output for ISO7831 | 2 | 2.5 | μs | |||
Enable propagation delay, high impedance-to-low output for ISO7831F | 17 | 32 | ns | ||||
tDO | Default output delay time from input power loss | Measured from the time VCC goes below 1.7 V. See Figure 15 | 0.2 | 9 | μs | ||
tie | Time interval error | 216 – 1 PRBS data at 100 Mbps | 0.91 | ns |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
tPLH, tPHL | Propagation delay time | See Figure 13 | 7.5 | 11.7 | 17.5 | ns |
PWD | Pulse width distortion(1) |tPHL – tPLH| | 0.66 | 4.2 | ns | ||
tsk(o) | Channel-to-channel output skew time(2) | Same-direction Channels | 2.2 | ns | ||
tsk(pp) | Part-to-part skew time(3) | 4.5 | ns | |||
tr | Output signal rise time | See Figure 13 | 1 | 3.5 | ns | |
tf | Output signal fall time | 1.2 | 3.5 | ns | ||
tPHZ | Disable propagation delay, high-to-high impedance output | See Figure 14 | 22 | 45 | ns | |
tPLZ | Disable propagation delay, low-to-high impedance output | 22 | 45 | ns | ||
tPZH | Enable propagation delay, high impedance-to-high output for ISO7831 | 18 | 45 | ns | ||
Enable propagation delay, high impedance-to-high output for ISO7831F | 2 | 2.5 | μs | |||
tPZL | Enable propagation delay, high impedance-to-low output for ISO7831 | 2 | 2.5 | μs | ||
Enable propagation delay, high impedance-to-low output for ISO7831F | 18 | 45 | ns | |||
tDO | Default output delay time from input power loss | Measured from the time VCC goes below 1.7 V. See Figure 15 | 0.2 | 9 | μs | |
tie | Time interval error | 216 – 1 PRBS data at 100 Mbps | 0.91 | ns |
TA = 25°C | CL = 15 pF |
TA = 25°C |
TA = 25°C | CL = No Load |
TA = 25°C |