JAJSUF7 November   2023  – April 2024 IWRL6432AOP

ADVANCE INFORMATION  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. 機能ブロック図
  6. デバイスの比較
    1. 5.1 関連製品
  7. 端子構成および機能
    1. 6.1 ピン配置図
    2.     10
    3. 6.2 信号の説明
      1.      12
      2.      13
      3.      14
      4.      15
      5.      16
      6.      17
      7.      18
      8.      19
      9.      20
      10.      21
      11.      22
      12.      23
      13.      24
      14.      25
      15.      26
      16.      27
  8. 仕様
    1. 7.1  絶対最大定格
    2. 7.2  ESD 定格
    3. 7.3  電源投入時間 (POH)
    4. 7.4  推奨動作条件
    5. 7.5  ワンタイム プログラマブル (OTP) eFuse の VPP 仕様
      1. 7.5.1 OTP eFuse プログラミングの推奨動作条件
      2. 7.5.2 ハードウェア要件
      3. 7.5.3 ハードウェア保証への影響
    6. 7.6  電源仕様
      1. 7.6.1 消費電力が最適化された 3.3V I/O トポロジ
      2. 7.6.2 消費電力が最適化された 1.8V I/O トポロジ
      3. 7.6.3 BOM が最適化された 3.3V I/O トポロジ
      4. 7.6.4 BOM が最適化された 1.8V I/O トポロジ
      5. 7.6.5 システム トポロジ
        1. 7.6.5.1 電源トポロジ
          1. 7.6.5.1.1 BOM 最適化モード
          2. 7.6.5.1.2 消費電力最適化モード
      6. 7.6.6 BOM 最適化トポロジのための内部 LDO 出力デカップリング コンデンサおよびレイアウト条件
        1. 7.6.6.1 単一コンデンサ レール
          1. 7.6.6.1.1 1.2V デジタル LDO
        2. 7.6.6.2 2 コンデンサ レール
          1. 7.6.6.2.1 1.2V RF LDO
          2. 7.6.6.2.2 1.2V SRAM LDO
          3. 7.6.6.2.3 1.0V RF LDO
      7. 7.6.7 ノイズおよびリップルの仕様
    7. 7.7  パワー セーブ モード
      1. 7.7.1 標準消費電力の値
    8. 7.8  電圧レールごとのピーク電流要件
    9. 7.9  サポート対象 DFE 機能
    10. 7.10 RF 仕様
    11. 7.11 CPU の仕様
    12. 7.12 熱抵抗特性
    13. 7.13 アンテナ放射パターン
      1. 7.13.1 レシーバのアンテナ放射パターン
      2. 7.13.2 トランスミッタのアンテナ放射パターン
    14. 7.14 アンテナ位置
    15. 7.15 タイミングおよびスイッチング特性
      1. 7.15.1  電源シーケンスおよびリセット タイミング
      2. 7.15.2  同期フレーム トリガ
      3. 7.15.3  入力クロックおよび発振器
        1. 7.15.3.1 クロック仕様
      4. 7.15.4  マルチチャネル バッファ付き / 標準シリアル ペリフェラル インターフェイス (McSPI)
        1. 7.15.4.1 McSPI の特長
        2. 7.15.4.2 SPI のタイミング条件
        3. 7.15.4.3 SPI - コントローラ モード
          1. 7.15.4.3.1 SPI - コントローラ モードのタイミングおよびスイッチング要件
          2. 7.15.4.3.2 SPI 出力タイミングのタイミングおよびスイッチング特性 - コントローラ モード
        4. 7.15.4.4 SPI - ペリフェラル モード
          1. 7.15.4.4.1 SPI のタイミングおよびスイッチング要件 - ペリフェラル モード
          2. 7.15.4.4.2 SPI 出力タイミングのタイミングおよびスイッチング特性 - セカンダリ モード
      5. 7.15.5  RDIF インターフェイスの構成
        1. 7.15.5.1 RDIF インターフェイスのタイミング
        2. 7.15.5.2 RDIF データ形式
      6. 7.15.6  汎用入出力 (General-Purpose Input/Output)
        1. 7.15.6.1 出力タイミングと負荷容量 (CL) のスイッチング特性
      7. 7.15.7  CAN-FD (Controller Area Network - Flexible Data-rate)
        1. 7.15.7.1 CANx TX および RX ピンの動的特性
      8. 7.15.8  シリアル通信インターフェイス (SCI)
        1. 7.15.8.1 SCI のタイミング要件
      9. 7.15.9  I2C (Inter-Integrated Circuit Interface)
        1. 7.15.9.1 I2C のタイミング要件
      10. 7.15.10 クワッド シリアル ペリフェラル インターフェイス (QSPI)
        1. 7.15.10.1 QSPI のタイミング条件
        2. 7.15.10.2 QSPI 入力 (読み取り) タイミングのタイミング要件
        3. 7.15.10.3 QSPI スイッチング特性
      11. 7.15.11 JTAG インターフェイス
        1. 7.15.11.1 JTAG のタイミング条件
        2. 7.15.11.2 IEEE 1149.1 JTAG のタイミング要件
        3. 7.15.11.3 IEEE 1149.1 JTAG の推奨動作条件に対するスイッチング特性
  9. 詳細説明
    1. 8.1 概要
    2. 8.2 機能ブロック図
    3. 8.3 サブシステム
      1. 8.3.1 RF およびアナログ サブシステム
      2. 8.3.2 クロック サブシステム
      3. 8.3.3 送信サブシステム
      4. 8.3.4 受信サブシステム
      5. 8.3.5 プロセッサ サブシステム
      6. 8.3.6 ホスト インターフェイス
      7. 8.3.7 アプリケーション サブシステム Cortex-M4F
      8. 8.3.8 ハードウェア アクセラレータ (HWA1.2) の特長
        1. 8.3.8.1 ハードウェア アクセラレータ機能 HWA1.1 と HWA1.2 の違い
    4. 8.4 その他のサブシステム
      1. 8.4.1 ユーザー アプリケーション向け GPADC チャネル (サービス)
      2. 8.4.2 GPADC のパラメータ
    5. 8.5 メモリ パーティションの選択
    6. 8.6 ブート モード
  10. 監視と診断
  11. 10アプリケーション、実装、およびレイアウト
    1. 10.1 アプリケーション情報
    2. 10.2 リファレンス回路図
  12. 11デバイスおよびドキュメントのサポート
    1. 11.1 デバイス命名規則
    2. 11.2 ツールとソフトウェア
    3. 11.3 ドキュメントのサポート
    4. 11.4 サポート リソース
    5. 11.5 商標
    6. 11.6 静電放電に関する注意事項
    7. 11.7 用語集
  13. 12改訂履歴
  14. 13メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
  • AMY|101
サーマルパッド・メカニカル・データ
発注情報

I2C のタイミング要件

スタンダード モード (1)ファスト モード単位
最小値最大値最小値最大値
tc(SCL)サイクル時間、SCL102.5μs
tsu(SCLH-SDAL)セットアップ時間、SCL High から SDA Low まで
(繰り返しスタート条件の場合)
4.70.6μs
th(SCLL-SDAL)ホールド時間、SDA Low から SCL Low の間
(スタートおよび繰り返しスタート条件の場合)
40.6μs
tw(SCLL)パルス幅、SCL low4.71.3μs
tw(SCLH)パルス幅、SCL high40.6μs
tsu(SDA-SCLH)セットアップ時間、SDA 有効から SCL High まで250100ns
th(SCLL-SDA)ホールド時間、SCL low から SDA 有効の間03.45(1)00.9μs
tw(SDAH)パルス幅、ストップ条件とスタート条件の間の SDA High の期間4.71.3μs
tsu(SCLH-SDAH)セットアップ時間、SCL High から SDA High まで
(ストップ条件の場合)
40.6μs
tw(SP)パルス幅、スパイク (抑制が必要)050ns
Cb(2)(3)各バス ラインの容量性負荷400400pF
I2C ピンの SDA および SCL は、フェイルセーフ I/O バッファを備えていません。これらのピンは、デバイスの電源がオフのときに電流を引き出す可能性があります。
I2C バス デバイスの th(SDA-SCLL) の最大値を満たす必要があるのは、SCL 信号の Low 期間 (tw(SCLL)) を本デバイスがストレッチ (延長) しない場合に限られます。
Cb = 1 本のバス ラインの合計容量 (pF 単位)。ファスト モード デバイスと混在する場合、より高速な立ち下がり時間が許容されます。
IWRL6432AOP I2C タイミング図図 7-19 I2C タイミング図
注:
  • SCL 信号の立ち下がりエッジの未定義領域をブリッジするため、デバイスは SDA 信号のために (SCL 信号の VIHmin を基準として) 300ns 以上のホールド時間を内部的に確保する必要があります。
  • th(SDA-SCLL) の最大値を満たす必要があるのは、SCL 信号の Low 期間 (tw(SCLL)) を本デバイスがストレッチ (延長) しない場合に限られます。ファースト モード I2C バス デバイスは、スタンダード モード I2C バス システムでも使えますが、その場合、tsu(SDA-SCLH) ≧ 250ns の要件を満たす必要があります。本デバイスが SCL 信号の Low 期間をストレッチしない場合、これは自動的に当てはまります。そのようなデバイスが SCL 信号の Low 期間をストレッチする場合、次のデータ ビットを SDA ラインに tr max + tsu(SDA-SCLH) の間出力する必要があります。