The LM20 is a precision analog output CMOS integrated-circuit temperature sensor that operates over −55°C to 130°C. The power supply operating range is 2.4 V to 5.5 V. The transfer function of LM20 is predominately linear, yet has a slight predictable parabolic curvature. The accuracy of the LM20 when specified to a parabolic transfer function is ±1.5°C at an ambient temperature of 30°C. The temperature error increases linearly and reaches a maximum of ±2.5°C at the temperature range extremes. The temperature range is affected by the power supply voltage. At a power supply voltage of 2.7 V to 5.5 V, the temperature range extremes are 130°C and −55°C. Decreasing the power supply voltage to 2.4 V changes the negative extreme to −30°C, while the positive extreme remains at 130°C.
The LM20 quiescent current is less than 10 μA. Therefore, self-heating is less than 0.02°C in still air. Shutdown capability for the LM20 is intrinsic because its inherent low power consumption allows it to be powered directly from the output of many logic gates or does not necessitate shutdown.
PART NUMBER | PACKAGE | BODY SIZE (NOM) |
---|---|---|
LM20 | SC70 (5) | 2.00 mm × 1.25 mm |
DSBGA (4) | 0.96 mm × 0.96 mm |
Changes from P Revision (Feburary 2013) to Q Revision
Changes from O Revision (February 2013) to P Revision
PIN | TYPE | DESCRIPTION | ||
---|---|---|---|---|
NAME | DSBGA | SC70 | ||
GND | — | 2 | GND | Device substrate and die attach paddle, connect to power supply negative terminal. For optimum thermal conductivity to the PC board ground plane, pin 2 must be grounded. This pin may also be left floating. |
GND | A2 | 5 | GND | Device ground pin, connect to power supply negative terminal. |
NC | A1 | 1 | — | NC (pin 1) must be left floating or grounded. Other signal traces must not be connected to this pin. |
VO | B1 | 3 | Analog Output | Temperature sensor analog output |
V+ | B2 | 4 | Power | Positive power supply pin |
MIN | MAX | UNIT | ||
---|---|---|---|---|
Supply Voltage | −0.2 | 6.5 | V | |
Output Voltage | −0.6 | (V+ + 0.6 ) | V | |
Output Current | 10 | mA | ||
Input Current at any pin(2) | 5 | mA | ||
Maximum Junction Temperature (TJMAX) | 150 | °C | ||
Storage temperature, Tstg | −65 | 150 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±2500 | V |
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±250 |
MIN | MAX | UNIT | ||
---|---|---|---|---|
LM20B, LM20C with 2.4 V ≤ V+≤ 2.7 V | −30 | 130 | °C | |
LM20B, LM20C with 2.7 V ≤ V+≤ 5.5 V | −55 | 130 | °C | |
LM20S with 2.4 V ≤ V+≤ 5.5 V | −30 | 125 | °C | |
LM20S with 2.7 V ≤ V+≤ 5.5 V | −40 | 125 | °C | |
Supply Voltage Range (V+) | 2.4 | 5.5 | V |
THERMAL METRIC(1) | LM20 | UNIT | ||
---|---|---|---|---|
DCK (SC70) | YZR (DSBGA) | |||
5 PINS | 4 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 282 | 197 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 93 | 2 | |
RθJB | Junction-to-board thermal resistance | 62 | 40 | |
ψJT | Junction-to-top characterization parameter | 1.6 | 11 | |
ψJB | Junction-to-board characterization parameter | 62 | 40 | |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | — | — |
PARAMETER | TEST CONDITIONS | MIN(1) | TYP(2) | MAX(1) | UNIT |
---|---|---|---|---|---|
Temperature to Voltage Error VO = (−3.88×10−6× T 2) + (−1.15×10−2× T) + 1.8639 V(3) |
TA = 25°C to 30°C | –1.5 | 1.5 | °C | |
TA = 130°C | –2.5 | 2.5 | °C | ||
TA = 125°C | –2.5 | 2.5 | °C | ||
TA = 100°C | –2.2 | 2.2 | °C | ||
TA = 85°C | –2.1 | 2.1 | °C | ||
TA = 80°C | –2.0 | 2.0 | °C | ||
TA = 0°C | –1.9 | 1.9 | °C | ||
TA = –30°C | –2.2 | 2.2 | °C | ||
TA = –40°C | –2.3 | 2.3 | °C | ||
TA = –55°C | –2.5 | 2.5 | °C | ||
Output Voltage at 0°C | 1.8639 | V | |||
Variance from Curve | ±1.0 | °C | |||
Non-linearity(4) | –20°C ≤ TA ≤ 80°C | ±0.4% | |||
Sensor Gain (Temperature Sensitivity or Average Slope) to equation: VO=−11.77 mV / °C×T+1.860 V |
–30°C ≤ TA ≤ 100°C | –12.2 | –11.77 | –11.4 | mV/°C |
Output Impedance | Sourcing IL 0 μA to 16 μA(6)(7) | 160 | Ω | ||
Load Regulation(5) | Sourcing IL 0 μA to 16 μA(3)(7) | –2.5 | mV | ||
Line Regulation(8) | 2.4 V ≤ V+ ≤ 5.0 V | 3.3 | mV/V | ||
5.0 V ≤ V+ ≤ 5.5 V | 11 | mV | |||
Quiescent Current | 2.4 V ≤ V+ ≤ 5.0 V; TA = 25°C | 4.5 | 7 | μA | |
5.0 V ≤ V+ ≤ 5.5 V; TA = 25°C | 4.5 | 9 | μA | ||
2.4 V ≤ V+ ≤ 5.0 V | 4.5 | 10 | μA | ||
Change of Quiescent Current | 2.4 V ≤ V+ ≤ 5.5 V | 0.7 | μA | ||
Temperature Coefficient of Quiescent Current | –11 | nA/°C | |||
Shutdown Current | V+ ≤ 0.8 V | 0.02 | μA |
PARAMETER | TEST CONDITIONS | MIN(1) | TYP(2) | MAX(1) | UNIT |
---|---|---|---|---|---|
Temperature to Voltage Error VO = (−3.88×10−6× T 2) + (−1.15×10−2× T) + 1.8639 V(3) |
TA = 25°C to 30°C | –4 | 5 | °C | |
TA = 130°C | –5 | 5 | °C | ||
TA = 125°C | –5 | 5 | °C | ||
TA = 100°C | –4.7 | 4.7 | °C | ||
TA = 85°C | –4.6 | 4.6 | °C | ||
TA = 80°C | –4.5 | 4.5 | °C | ||
TA = 0°C | –4.4 | 4.4 | °C | ||
TA = –30°C | –4.7 | 4.7 | °C | ||
TA = –40°C | –4.8 | 4.8 | °C | ||
TA = –55°C | –5.0 | 5.0 | °C | ||
Output Voltage at 0°C | 1.8639 | V | |||
Variance from Curve | ±1.0 | °C | |||
Non-Linearity (4) | –20°C ≤ TA ≤ 80°C | ±0.4% | |||
Sensor Gain (Temperature Sensitivity or Average Slope) to equation: VO=−11.77 mV / °C×T+1.860 V |
–30°C ≤ TA ≤ 100°C | –12.6 | –11.77 | –11.0 | mV/°C |
Output Impedance | Sourcing IL 0 μA to 16 μA (6)(7) | 160 | Ω | ||
Load Regulation(5) | Sourcing IL 0 μA to 16 μA (6)(7) | –2.5 | mV | ||
Line Regulation(8) | 2.4 V ≤ V+ ≤ 5.0 V | 3.7 | mV/V | ||
5.0 V ≤ V+ ≤ 5.5 V | 11 | mV | |||
Quiescent Current | 2.4 V ≤ V+ ≤ 5.0 V; TA = 25°C | 4.5 | 7 | μA | |
5.0 V ≤ V+ ≤ 5.5 V; TA = 25°C | 4.5 | 9 | μA | ||
2.4 V ≤ V+ ≤ 5.0 V | 4.5 | 10 | μA | ||
Change of Quiescent Current | 2.4 V ≤ V+ ≤ 5.5 V | 0.7 | μA | ||
Temperature Coefficient of Quiescent Current | –11 | nA/°C | |||
Shutdown Current | V+ ≤ 0.8 V | 0.02 | μA |
PARAMETER | TEST CONDITIONS | MIN(1) | TYP(2) | MAX(1) | UNIT |
---|---|---|---|---|---|
Temperature to Voltage Error VO = (−3.88×10−6×T 2) + (−1.15×10−2× T) + 1.8639 V(3) |
TA = 25°C to 30°C | –2.5 | ±1.5 | 2.5 | °C |
TA = 125°C | –3.5 | 3.5 | °C | ||
TA = 100°C | –3.2 | 3.2 | °C | ||
TA = 85°C | –3.1 | 3.1 | °C | ||
TA = 80°C | –3.0 | 3.0 | °C | ||
TA = 0°C | –2.9 | 2.9 | °C | ||
TA = –30°C | –3.3 | 3.3 | °C | ||
TA = –40°C | –3.5 | 3.5 | °C | ||
Output Voltage at 0°C | 1.8639 | V | |||
Variance from Curve | ±1.0 | °C | |||
Non-Linearity (4) | –20°C ≤ TA ≤ 80°C | ±0.4% | |||
Sensor Gain (Temperature Sensitivity or Average Slope) to equation: VO= −11.77 mV/ °C × T + 1.860 V |
–30°C ≤ TA ≤ 100°C | –12.6 | –11.77 | –11.0 | mV/°C |
Output Impedance | Sourcing IL 0 μA to 16 μA(6)(7) | 160 | Ω | ||
Load Regulation(5) | Sourcing IL 0 μA to 16 μA(6)(7) | –2.5 | mV | ||
Line Regulation(8) | 2.4 V ≤ V+ ≤ 5.0 V | 3.7 | mV/V | ||
5.0 V ≤ V+ ≤ 5.5 V | 11 | mV | |||
Quiescent Current | 2.4 V ≤ V+ ≤ 5.0 V; TA = 25°C | 4.5 | 7 | μA | |
5.0 V ≤ V+ ≤ 5.5 V; TA = 25°C | 4.5 | 9 | μA | ||
2.4 V ≤ V+ ≤ 5.0 V | 4.5 | 10 | μA | ||
Change of Quiescent Current | 2.4 V ≤ V+ ≤ 5.5 V | 0.7 | μA | ||
Temperature Coefficient of Quiescent Current | –11 | nA/°C | |||
Shutdown Current | V+ ≤ 0.8 V | 0.02 | μA |
The LM20 device is a precision analog output CMOS integrated-circuit temperature sensor that operates over a temperature range of −55°C to 130°C. The power supply operating range is 2.4 V to 5.5 V. The transfer function of LM20 is predominately linear, yet has a slight predictable parabolic curvature. The accuracy of the LM20 when specified to a parabolic transfer function is typically ±1.5°C at an ambient temperature of 30°C. The temperature error increases linearly and reaches a maximum of ±2.5°C at the temperature range extremes for the LM20. The temperature range is affected by the power supply voltage. At a power supply voltage of 2.7 V to 5.5 V, the temperature range extremes are 130°C and −55°C. Decreasing the power supply voltage to 2.4 V changes the negative extreme to −30°C, while the positive remains at 130°C.
The LM20 quiescent current is less than 10 μA. Therefore, self-heating is less than 0.02°C in still air. Shutdown capability for the LM20 is intrinsic because its inherent low power consumption allows it to be powered directly from the output of many logic gates or, does not necessitate shutdown at all.
The temperature sensing element is comprised of a simple base emitter junction that is forward biased by a current source. The temperature sensing element is then buffered by an amplifier and provided to the OUT pin. The amplifier has a simple class A output stage thus providing a low impedance output that can source 16 µA and sink 1 µA.
The LM20 transfer function can be described in different ways with varying levels of precision. A simple linear transfer function with good accuracy near 25°C is:
Over the full operating temperature range of −55°C to 130°C, best accuracy can be obtained by using the parabolic transfer function.
Using Equation 2, the following temperature to voltage output characteristic table can be generated.
TEMP (°C) |
VOUT (V) |
TEMP (°C) |
VOUT (V) |
TEMP (°C) |
VOUT (V) |
TEMP (°C) |
VOUT (V) |
TEMP (°C) |
VOUT (V) |
TEMP (°C) |
VOUT (V) |
TEMP (°C) |
VOUT (V) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
-55 | 2.4847 | -28 | 2.1829 | -1 | 1.8754 | 26 | 1.5623 | 53 | 1.2435 | 80 | 0.9191 | 107 | 0.5890 |
-54 | 2.4736 | -27 | 2.1716 | 0 | 1.8639 | 27 | 1.5506 | 54 | 1.2316 | 81 | 0.9069 | 108 | 0.5766 |
-53 | 2.4625 | -26 | 2.1603 | 1 | 1.8524 | 28 | 1.5389 | 55 | 1.2197 | 82 | 0.8948 | 109 | 0.5643 |
-52 | 2.4514 | -25 | 2.1490 | 2 | 1.8409 | 29 | 1.5271 | 56 | 1.2077 | 83 | 0.8827 | 110 | 0.5520 |
-51 | 2.4403 | -24 | 2.1377 | 3 | 1.8294 | 30 | 1.5154 | 57 | 1.1958 | 84 | 0.8705 | 111 | 0.5396 |
-50 | 2.4292 | -23 | 2.1263 | 4 | 1.8178 | 31 | 1.5037 | 58 | 1.1838 | 85 | 0.8584 | 112 | 0.5272 |
-49 | 2.4181 | -22 | 2.1150 | 5 | 1.8063 | 32 | 1.4919 | 59 | 1.1719 | 86 | 0.8462 | 113 | 0.5149 |
-48 | 2.4070 | -21 | 2.1037 | 6 | 1.7948 | 33 | 1.4802 | 60 | 1.1599 | 87 | 0.8340 | 114 | 0.5025 |
-47 | 2.3958 | -20 | 2.0923 | 7 | 1.7832 | 34 | 1.4684 | 61 | 1.1480 | 88 | 0.8219 | 115 | 0.4901 |
-46 | 2.3847 | -19 | 2.0810 | 8 | 1.7717 | 35 | 1.4566 | 62 | 1.1360 | 89 | 0.8097 | 116 | 0.4777 |
-45 | 2.3735 | -18 | 2.0696 | 9 | 1.7601 | 36 | 1.4449 | 63 | 1.1240 | 90 | 0.7975 | 117 | 0.4653 |
-44 | 2.3624 | -17 | 2.0583 | 10 | 1.7485 | 37 | 1.4331 | 64 | 1.1120 | 91 | 0.7853 | 118 | 0.4529 |
-43 | 2.3512 | -16 | 2.0469 | 11 | 1.7369 | 38 | 1.4213 | 65 | 1.1000 | 92 | 0.7731 | 119 | 0.4405 |
-42 | 2.3401 | -15 | 2.0355 | 12 | 1.7253 | 39 | 1.4095 | 66 | 1.0880 | 93 | 0.7608 | 120 | 0.4280 |
-41 | 2.3289 | -14 | 2.0241 | 13 | 1.7137 | 40 | 1.3977 | 67 | 1.0760 | 94 | 0.7486 | 121 | 0.4156 |
-40 | 2.3177 | -13 | 2.0127 | 14 | 1.7021 | 41 | 1.3859 | 68 | 1.0640 | 95 | 0.7364 | 122 | 0.4032 |
-39 | 2.3065 | -12 | 2.0013 | 15 | 1.6905 | 42 | 1.3741 | 69 | 1.0519 | 96 | 0.7241 | 123 | 0.3907 |
-38 | 2.2953 | -11 | 1.9899 | 16 | 1.6789 | 43 | 1.3622 | 70 | 1.0399 | 97 | 0.7119 | 124 | 0.3782 |
-37 | 2.2841 | -10 | 1.9785 | 17 | 1.6673 | 44 | 1.3504 | 71 | 1.0278 | 98 | 0.6996 | 125 | 0.3658 |
-36 | 2.2729 | -9 | 1.9671 | 18 | 1.6556 | 45 | 1.3385 | 72 | 1.0158 | 99 | 0.6874 | 126 | 0.3533 |
-35 | 2.2616 | -8 | 1.9557 | 19 | 1.6440 | 46 | 1.3267 | 73 | 1.0037 | 100 | 0.6751 | 127 | 0.3408 |
-34 | 2.2504 | -7 | 1.9442 | 20 | 1.6323 | 47 | 1.3148 | 74 | 0.9917 | 101 | 0.6628 | 128 | 0.3283 |
-33 | 2.2392 | -6 | 1.9328 | 21 | 1.6207 | 48 | 1.3030 | 75 | 0.9796 | 102 | 0.6505 | 129 | 0.3158 |
-32 | 2.2279 | -5 | 1.9213 | 22 | 1.6090 | 49 | 1.2911 | 76 | 0.9675 | 103 | 0.6382 | 130 | 0.3033 |
-31 | 2.2167 | -4 | 1.9098 | 23 | 1.5973 | 50 | 1.2792 | 77 | 0.9554 | 104 | 0.6259 | — | — |
-30 | 2.2054 | -3 | 1.8984 | 24 | 1.5857 | 51 | 1.2673 | 78 | 0.9433 | 105 | 0.6136 | — | — |
-29 | 2.1941 | -2 | 1.8869 | 25 | 1.5740 | 52 | 1.2554 | 79 | 0.9312 | 106 | 0.6013 | — | — |
Solving Equation 2 for T:
The only functional mode of the LM20 is that it has an analog output inversely proportional to temperature.