JAJSG39 September   2018 LM2735-Q1

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     Device Images
      1.      代表的な昇圧アプリケーションの回路
      2.      効率と負荷電流との関係VO=12V
  4. 改訂履歴
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
      1. 7.1.1 Theory of Operation
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Current Limit
      2. 7.3.2 Thermal Shutdown
      3. 7.3.3 Soft Start
      4. 7.3.4 Compensation
    4. 7.4 Device Functional Modes
      1. 7.4.1 Enable Pin and Shutdown Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1  LM2735X-Q1 SOT-23 Design Example 1
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Custom Design With WEBENCH® Tools
          2. 8.2.1.2.2 Inductor Selection
          3. 8.2.1.2.3 Input Capacitor
          4. 8.2.1.2.4 Output Capacitor
          5. 8.2.1.2.5 Setting the Output Voltage
        3. 8.2.1.3 Application Curves
      2. 8.2.2  LM2735Y-Q1 SOT-23 Design Example 2
      3. 8.2.3  LM2735X-Q1 WSON Design Example 3
      4. 8.2.4  LM2735Y-Q1 WSON Design Example 4
      5. 8.2.5  LM2735X-Q1 SOT-23 Design Example 6
      6. 8.2.6  LM2735Y-Q1 SOT-23 Design Example 7
      7. 8.2.7  LM2735X-Q1 SOT-23 Design Example 8
      8. 8.2.8  LM2735Y-Q1 SOT-23 Design Example 9
      9. 8.2.9  LM2735X-Q1 WSON Design Example 10
      10. 8.2.10 LM2735Y-Q1 WSON Design Example 11
      11. 8.2.11 LM2735X-Q1 WSON SEPIC Design Example 12
      12. 8.2.12 LM2735X-Q1 SOT-23 LED Design Example 14
      13. 8.2.13 LM2735Y-Q1 WSON FlyBack Design Example 15
      14. 8.2.14 LM2735X-Q1 SOT-23 LED Design Example 16 VRAIL > 5.5 V Application
      15. 8.2.15 LM2735X-Q1 SOT-23 LED Design Example 17 Two-Input Voltage Rail Application
      16. 8.2.16 SEPIC Converter
        1. 8.2.16.1 Detailed Design Procedure
          1. 8.2.16.1.1 SEPIC Design Guide
          2. 8.2.16.1.2 Small Ripple Approximation
          3. 8.2.16.1.3 Steady State Analysis With Loss Elements
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 WSON Package
    2. 10.2 Layout Examples
    3. 10.3 Thermal Considerations
      1. 10.3.1 Definitions
      2. 10.3.2 PCB Design With Thermal Performance in Mind
      3. 10.3.3 LM2735-Q1 Thermal Models
      4. 10.3.4 Calculating Efficiency, and Junction Temperature
        1. 10.3.4.1 Example Efficiency Calculation
      5. 10.3.5 Calculating RθJA and RΨJC
        1. 10.3.5.1 Procedure
        2. 10.3.5.2 Example From Previous Calculations
  11. 11デバイスおよびドキュメントのサポート
    1. 11.1 デバイス・サポート
      1. 11.1.1 デベロッパー・ネットワークの製品に関する免責事項
    2. 11.2 WEBENCH®ツールによるカスタム設計
    3. 11.3 ドキュメントのサポート
      1. 11.3.1 関連資料
    4. 11.4 ドキュメントの更新通知を受け取る方法
    5. 11.5 コミュニティ・リソース
    6. 11.6 商標
    7. 11.7 静電気放電に関する注意事項
    8. 11.8 Glossary
  12. 12メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Compensation

The LM2735-Q1 uses constant-frequency peak current mode control. This mode of control allows for a simple external compensation scheme that can be optimized for each application. A complicated mathematical analysis can be completed to fully explain the internal and external compensation of the LM2735-Q1, but for simplicity, a graphical approach with simple equations will be used. Below is a Gain and Phase plot of a LM2735-Q1 that produces a 12-V output from a 5-V input voltage. The Bode plot shows the total loop Gain and Phase without external compensation.

LM2735-Q1 20215831.gifFigure 15. LM2735-Q1 Without External Compensation

One can see that the crossover frequency is fine, but the phase margin at 0 dB is very low (22°). A zero can be placed just above the crossover frequency so that the phase margin will be bumped up to a minimum of 45°. Below is the same application with a zero added at 8 kHz.

LM2735-Q1 20215832.gifFigure 16. LM2735-Q1 With External Compensation

The simplest method to determine the compensation component value is as follows.

Set the output voltage with Equation 1.

Equation 1. LM2735-Q1 20215830.gif

where

  • R1 is the bottom resistor and R2 is the resistor tied to the output voltage.

The next step is to calculate the value of C3. The internal compensation has been designed so that when a zero is added from 5 kHz to 10 kHz, the converter will have good transient response with plenty of phase margin for all input and output voltage combinations.

Equation 2. LM2735-Q1 20215834.gif

Lower output voltages will have the zero set closer to 10 kHz, and higher output voltages will usually have the zero set closer to 5 kHz. TI recommends obtaining a gain and phase plot for your actual application. See Application and Implementation to obtain examples of working applications and the associated component values.

Pole at origin due to internal GM amplifier:

Equation 3. FP-ORIGIN

Pole due to output load and capacitor:

Equation 4. LM2735-Q1 20215835.gif

Equation 4 only determines the frequency of the pole for perfect current mode control (CMC). That is, it doesn’t take into account the additional internal artificial ramp that is added to the current signal for stability reasons. Adding artificial ramp begins to move away from CMC to voltage mode control (VMC). The artifact is that the pole due to the output load, and output capacitor is actually slightly higher in frequency than calculated. In this example, it is calculated at 650 Hz, but in reality, it is around 1 kHz.

The zero created with capacitor C3 and resistor R2:

LM2735-Q1 20215829.gifFigure 17. Setting External Pole-Zero
Equation 5. LM2735-Q1 20215836.gif

There is an associated pole with the zero that was created in Equation 5.

Equation 6. LM2735-Q1 20215838.gif

It is always higher in frequency than the zero.

A right-half plane zero (RHPZ) is inherent to all boost converters. One must remember that the gain associated with a right-half plane zero increases at 20 dB per decade, but the phase decreases by 45° per decade. For most applications there is little concern with the RHPZ due to the fact that the frequency at which it shows up is well beyond crossover and has little to no effect on loop stability. One must be concerned with this condition for large inductor values and high output currents.

Equation 7. LM2735-Q1 20215839.gif

There are miscellaneous poles and zeros associated with parasitics internal to the LM2735-Q1, external components, and the PCB. They are located well over the crossover frequency, and for simplicity are not discussed.